
r

(NASA-CR-189383) AN INTERACTIVE

INTERFACE FOR NCAR GRAPHICS Fina]

Report, JuI. 1991 - Jul. 1994

(National Center for Atmospheric

Research) 218 p

N95-17324

Unclas

G3/61 0033942

Fhml Report on NASA/AISRP Proposal Order

No. S-'46494-E, An h teractive Interface for
NCAR Graphics.

BILL BUZBEE, BOB LACKMAN, and ETHAN ALPERT, NCAR

NASA Funding

Funding of this proposal occurred between July

1991 and July 1994. During the lifetime of this

project, quarterly and tri-annual reports were

issued. In 1992 and 1993 progress report

presentations were given at the annual summer

AISRP Workshop in Boulder, CO. Since the full

project "Aft Interactive Interface for NCAR

Graphics" was much larger in scope than covered

by the size of the NASA grant, the statement of

work to be covered by the grant was defined on

March I 1, I991 to be a reasonable subset of the

total effort. This report, however, will discuss the

entire project, since that will have more meaning

to the reader.

NCAR Interactive

The goal of the NCAR Interactive project was to

create, from existing utilities, a fully integrated

scientific visualization environment. To be fully

integrated, this environment had to provide a

means of reading and writing data, a means of

manipulating that data, and a means of visually

analyzing the data interactively. It had to be easy

to use, work efficiently, and be user-extensible.

Furthermore, this environment had to support

users with a wide range of skill levels: from users

with extensive programming and technical skills

to users who have not developed these skills. To

respond to these varied needs, we created a set of

intgrfaces which allow for skill levels from the

occasional user or novice to the expert user who

CR-189383

///v4 d_

/z/-6 /

ddl .

33

can go so far as to extend the software./., 2,]--J _'

Integrating interactive data access and

manipulation with the visual analysis techniques

of NCAR Graphics into one system was deemed

to have tremendous benefits to current and future

users of NCAR Graphics. This saves users from

writing custom data-reading code as a

prerequisite for producing graphics. It simplifies

and accelerates the process of tailoring a data plot

for publication. Users can develop customized

plot specifications that can be saved and reused.

New users have multiple ways to learn to use

NCAR Graphics. Users who develop

applications with NCAR Graphics will find the

new API to be consistent across utilities and

supportive of many interactive demands.

Three major components of the NCAR

Interactive system accomplish these goals: a

toolkit programming interface library, a text-

based data manipulation and graph specification

language interpreter, and a "point-and-click"

graphical user interface. All of these interfaces

accomplish the same result from the user's point

of view, a user-specified display of data.

Functional Specification

You can acquire a PostScript copy of the

functional specification of the NCAR interactive

project via anonymous ftp from ftp.ucar_edu. The

path to the file is ncari/fspec.tar.Z. A copy of this

document is attached to this report for your

convenience. Any specific questions with respect

to Version 4.0 can be sent to

ncargproto @ ncar.ucar.edu.

lof10

f

Figure 1 shows the various components of the

NCAR InteractiVe system. These components are

briefly described below. For a detailed

description of the NCAR Interactive system,

please refer to the Functional Specification
document.

Data output and
input files

X Windows display

J

IGraphical User Interface

Data NCL
,m_ortation] NCk internalI _c_

an_ . I 2 atamOde L I, NCARCQmrnand "

exportation I --_ _ [Language interpreter

i Function calls

Xll
protocol

HLUs

High Level Utilities constructed from current NCAR Graphics library

Figure I. NCAR-Interactive Functional Diagram

LLU Description

The existing Version 3.2 of NCAR Graphics, a

set of about 500 low level graphics routines with

Fortran and C bindings, will be known as the

Low Level Utilities (LLUs) in Version 4.0. The

current Version 3.2 Fundamentals manual, which

tells how to use this library, will be relabeled

"Low Level Utility Fundamentals." This library

will continue to be supported to ensure that the

many current NCAR Graphics codes spread

throughout the research community will continue
tO run.

However, when users generate new codes they

will be urged to try one of the new interfaces: the

High Level Utilities (HLUs), NCAR Command

Language (NCL), or Graphical User Interface

(GUI).

HLU Description

The toolkit programming interface library builds

upon the existing NCAR Graphics low level

libraries. The new toolkit library is called the

High Level Utilities (HLUs). The HLUs

represent a new interface to the NCAR Graphics

2of 10

!

library with a great deal of the underlying low-
level " _ "lmplementataon details hidden from the

application programmer.

The main purpose is to extend NCAR Graphics to

support the demands of interactive graphics,

primarily giving users the ability to change

features of the output frame efficiently and

quickly. Other features, like being able to retrieve

information about the current state of an HLU

and retrieving data coordinate information, are

built into the HLUs.

Other purposes of the new programming

interface to NCAR Graphics are to introduce a

new level of interface consistency between

utilities and to consolidate most of the existing

functionality into a new set of high level utilities

that produce the same or better results, but reduce

the overall complexity of using the package. This

will make learning NCAR Graphics at the

programming level much easier. The toolkit has

entry points from both FORTRAN and C.

The model chosen to implement the HLUs is

essentially a simplified version of the X-Window

System Toolkit widget. Many changes have been

made to the model, but the main concepts are still

valid. This model supports the demands of an

interactive environment in which different plots

are created and displayed at different times with

different data and configurations. The X-

Window System Toolkit widget model

encapsulates the set of functions that draw a

given class of plot with a set of data needed to

configure it. These data can be line widths, fill

colors, transformation styles, actual data, etc. As

is the case for X-Window System widgets,

multiple instances of each type of plot object can

be created, destroyed, drawn, and reconfigured

without affecting any of the other instances. This

model also supports derived classes of I-ILU

objects (inheritance) and mixing of separate
classes to form new'classes.

HLU objects are configured just like X-Window

System widgets, with respect to resources. A

typical example of an HLU resource name is

"Nh.lTxFont", which sets the font for a TextItem

object. Only five functions are needed to use the

HLU library: NhlCreate to instantiate an object;

NhlDraw to draw it; NhlGetValues to determine

the current configuration of the object,

NhlSetValues to reconfigure it; and NhlDestroy

to get rid of it and free any memory it uses. A

unique integer ID is returned by the NhlCreate

call for each instance of an object. This ID

number is used to identify the object in the

remaining functions.

Additional features of an I-ILU object are its

ability to maintain its own transformation and its

ability to map screen positions into data

coordinates. Each object also knows how much

area on the screen it uses and can report its

bounding box in frame coordinates. Thus, when

objects change size they can automatically scale

text and line lengths proportionally. All of these

features are necessary for interactive operations.

HLU Objects

At release 4.0, the HLU library will contain the

following objects:

Textltem

LabelBars

Legends

Titles

TickMarks

XyPlot

Contour

Generic text placement object,

supports filled fonts

Generic filled label bar, used by

Contour object

Generic legend that displays both

symbols and fines with text, used

by XyPlot object

Positions titles around plots

Draws tick marks around plots in

5 transformation styles (LOG,

LINEAR, IRREGULAR,.

GEOGRAPHIC, and TIME)

Draws curves and symbols, uses

Titles, TickMarks, and Legends

Draws filled contours with and

3of10

f

MapPlot

Workstation

without maps, automatically

g_nerates a LabelBar and

TickMarks

Generates maps in any of

the 10 standard NCAR Graphics

transformations

Allows output to bedirected to

workstations of type NCGM,

PostScript, or an X11 window

To be added at release 4.1 are:

Histogram

StreamLine

Vectors

3D

Creates a histogram plot, uses

TickMark object

Creates a streamline with and

without maps

Creates a vector with and without

maps

A set of 3D HLUs (iso-surfaces,

surfaces...)

NCL Description

The heart of the system is the data manipulation

and graph specification language, called the

NCAR Command Language (NCL). NCL

provides easy and intuitive access to datasets and

allows users to explore and process their data

prior to visualization. Since datasets often come

in a variety of data formats, grid sizes, grid

resolutioias, and units, very different data.sets

often need to be combined, compared, and used

at the same time. Currently, specialized

applications must be developed to read

individual datasets and transform them into a

form that is compatible with other datasets being

used, as well as with the graphics package being

used.

NCL allows different datasets, in different

storage formats, to be imported into one uniform

and consistent data manipulation environment.

The primary data format used internally by NCL

is the netCDF data format. NCL doesn't place

any restrictions or conventions on the

organization of input netCDF files.

NCL is a complete programming language that

provides flexibility and configurability. In NCL,

the primary data type is the data file record. A

data file record stores one or more variables,

dimension information, coordinate variable

information, and attribute information as one

NCL obj_t. A binary file can be input, then

dimension names, variable names, attributes and

coordinate variables can be assigned to it using

NCL language constructs. The resulting file

record can be written to any of the currently

supported formats, including netCDF, without

writing a single line of source code.

NCL also provides the ability to create and

manipulate the HLU graphical objects utilizing

the same resources available through the HLU

toolkit interface.

NCL's function set contains built-in data

processing and mathematical functions. Users

can extend NCL functions to implement custom

data processing techniques and custom data

ingestion.

NCL commands can be interactively interpreted

and executed in line mode. In addition, an API

for NCL is under development which provides

GUI writers a uniform way to do data access, data

manipulation, and visualizations from within

their application using NCL scripts. This

simplifies the implementation of application-

specific GUIs by reducing the amount of design

time spent on the visualization code and the data

access code.

Data Import/Export

Figure 2 shows an NCL script for the import of a

netCDF dataset. Note that variables can be

extracted using latitude and longitude ranges

rather than numeric indices.

4of 10

f

Unique features of NCL

* Special language constructs that support the data model

coordinate indexing

a = (I(/4.3,...I), (/3.9,.../),.../)/)

al0 = _lat _

all = _lon"

a&lat = (/90,85, 80, ... /)

a&lon = (/-i0,-20,-30,.../)

aOunits = _Degrees C"

b = a(lon I {-90:-120},lat I {30:60})

Figure 2. NCL script for array access using coordinates

Visualization BIocks

Figure 3 shows several visualizations created by

an NCL script. NCL has a visualization block

feature that allows you to easily set the resources

of the HLU plot objects. Figure 3 shows a typical

visualization block.

GUI Description

The GUI for NCAR Interactive is built on top of

NCL, which is built on top of the IlLUs. Thus the

GUI will provide access to the data access and

manipulation tools as well as the visualization

specification. The GUI simplifies many of the

user's tasks by providing a "point-and-click"

style interface for selecting data, adding data to a

plot, and positioning plots within the output
frame.

Furthermore, the GUI allows users to "probe"

'data visualizations by attaching NCL scripts that

perform some analytical function to various

mouse and key press events, making true data

interaction possible.

Figure 4 shows a page layout on which a number

of graphical objects have been drawn including

three instances of the TextItem object. Each

instance can be selected, resized, or have its

resources altered.

At Version 4.1, the GUI will also provide editors

for color maps, fill patterns, line styles, area

masking, map projection specification, and

animation in addition to selections of all the

available resources.

Hypertext Documentation

All of the Version 4.0 interfaces are being

documented on-line in hypertext for search and

display access. Figure 5 shows the NCAR

Graphics documentation home page accessible

via the URL

http://cyclone:7777/nggenrl/ctrldisplay.html.

In the event that this URL address changes

between the writing of this report and your •

attempt to access it, please send e-mail to

ncargfx@ncar.ucar.edu requesting the new

NCAR Graphics home page URL.

5of10

r

k_

f_

_ _l_i__....

Low Level Utility Manuals.

The low level library manuals, called

"NCAR Graphics Fundamentals",

"NCAR Graphics Contouring and

Mapping Tutorial", and "NCAR GKS-

0A User Guide" at release 3.2 of NCAR

Graphics have also been converted to

hypertext. Figure 6 shows a sample

page from the Fundamentals manual.

Figure 5. NCAR Graphics documentation home page

The Version 4.0 documentation set under

development includes:

User Guide

TheUser Guide describes the various

package interfaces and how to use

them.

Quick Start Guide

The Quick Start Guide is a series of

examples that facilitate self training.

Reference Manual

The Reference Manual describes how

the software works. It specifies all NCL

functions, their syntax, and the actions

they produce. It also specifies all I-ILU

resources (option switches) and how

they are set.

Figure 6. Fundamentals Document available in Mosaic

Input/Output

Currently implemented input formats are

- netCDF, ASCII, and binary. The next set of

formats to be implemented will be I-IDF and

GRIB.

8of 10 ONGINAL PAGE tll

or Poo q ,j f1

T __ _ _ _

Outputcanbeto anX11 window,anNCGM file,
oraPostScriptfile. (TheprivateencodingNCAR
CGMformatcanbereplacedby+theCGM format
throughtheselectionof anenvironment
variable.)All variationsof PostScriptare
supportedincludingmonoandcolor for EPS,
EPSI,andstandardPostScript.Outputcanbein
landscapeor portraitmode.

Fonts and Symbols

A high quality set of fonts are available with

numerous font options as shown in Figure 7.

Since the fonts are stroked, characters can be

written at any size or orientation angle. Available

fonts include the math symbols and the full set of

standard WMO meteorological symbols.

Figure 7. Text options available in NCAR Graphics

In addition, a set of symbols for standard weather

have been created as shown in Figure 8.

f July 18, 1994

70s

BREEZY

70s

York

70s HUMID

90s

100S
STEAMY

®
Fronts

C,c4d

Figure 8. Creating weather maps with NCAR Graphics special symbols

OIW_IINN. PA_E i
OF POO_ _uAcn'Y

9of 10

_| _ _ 4 • _

System Requirements
J

NCAR Interactive is intended for use on all

UNIX platforms that are popular in universities

and other research communities. This includes

Suns, SGIs, HPs, IBMs, Digital Alphas, and

DECstations. It is also intended for installation

on Cray UNICOS systems; however, certain

interactive features may not be as useful on

heavily loaded Crays. The first release of Version

4.0 may not support all of these systems: Suns

and SGIs will be done first. Porting to the other

systems will then follow.

Conclusions, Recommendations, and

Acknowledgments

NASA funding was instrumental in helping us to

complete the first release of an interactive

version of NCAR Graphics in a reasonable time

frame. NCAR Graphics is a research community

resource whose value will be significantly

enhanced by the new interactive interfaces. At

the time of this writing, NCAR Graphics Version

4.0 is entering the test phase. Release of the

software is expected in early 1995.

Version 4.0 will contain a limited but useful set

of functionality; however, successive releases of

the software are planned which will continue to

expand the functionality of the High Level

Utilities, the NCAR Command Language, and

the Graphical User Interface. Moreover, HLU

objects, NCL functions, and GUI functionality

are user-extensible so they can grow in whatever

direction is necessary to meet the changing needs

of future researchers.

Although the creation of an interactive interface

for NCAR Graphics was not a basic research

project, it was a project that will significantly

improve the productivity of the broad research

community. It is our recommendation that more

projects of this nature should be included in

future agency grants. Basic research into new

technological areas is very important, but it is

also important that those researchers have a set of

high quality, extensible, easy-to-use tools to

facilitate their research.

10 of 10

NCAR INTERACTIVE

FUNCTIONAL SPECIFICATION

DRAFT

ALPERT, BOOTE and SCHEITLIN

SECTION 1

1.1

1.2

NCARInteractive overview 5

Introduction 5

Guideto this document 8

1.2.1 Software and hardware requirements 9

1.2.2 High Level Utilities 9
1.2.3 NCAR Command Language 10
1.2.4 The Graphical User Interface 10

SECTION 2 SOFTWARE REQUIREMENTS 13

SECTION 3 HARDWARE REQUIREMENTS 15

SECTION 4 New programming interface to NCAR Graphics (High Level

Utilities) 17

4.1 Overview 17

4.2 HLU usage 18

4.3 HLUefficiency 25

4.4 Resource naming conventions 26

4.5 User defaults file 28

4,6 Global resources 30

4.6.1 Color 30

4.6.2 Fill patterns 31

4.7 Common basic resources 32

4.7.1 Text 32
4.7.2 Lines 34

4.7.3 Arrays 35
4.7.4 Background color 36
4.7.5 Size and viewport 36

4.8 Common composite resources 36

4.8.1 "13ckmarks, tick mark labels, and grids
4.8.2 Legends 39
4.8.3 Label bars 41
4.8.4 Titles 43

4.8.5 Maps 44

4.9 X-Yplot 47

4.9.1 X-Y plot general parameters 47
4.9.2 X-Y plot curve parameters arrays 47
4.9.3 X-Y plot control parameters 48

4.10 Contour 48

4.11 Vector 50

4.12 Streamline 51

4.13 Common 3-D resources 52

4.14 Surface 52

36

NCAR Interactive Functional Specification 1

4.15 Isosurface 54

4.16 Histogram 59

4.17 Annotation 59

SECTION 5 NCAR Command Language Specification

5.1 Introduction to NCL 61

5.2 Language overview 62

5.2.1 NCL data model 63

5.2.2 NCL data types 64
5.2.3 Variables and data selection 65
5.2.4 NCL expressions and operators 75

5.2.5 Functions and procedures 81
5.2.6 NCL flow control 84

5.3 Visualization Specification Block 85

5.4 Builtin functions and procedures 87

5.4.1 GENERAL FUNCTIONS AND PROCEDURES 87
5.4.2 Built-in math functions 92

5.5 User extension to function set 93

61

SECTION 6 User interface requirements and design

6.1 Functional specification ofNCAR Interactive's GUI 97

6.1.1 Usability of NCAR Interactive's GUI 98
6.1.2 Adhering to standards 98
6.1.3 Plot and data specification 99
6.1.4 Data exploration 99

6.2 Initial design specification for NCAR Interactive's GUI

6.2.1 Mainwindow 101

6.2.2 Plot specification window 106
6.2.3 Data specification and manipulation window 108
6.2.4 Region selection and data viewing window 111
6.2.5 Help window 113

6.3 Style considerations 114

6.3.1 Butlon bindings 114
6.3.2 Key bindings 114
6.3.3 Key accelerators 114
6.3.4 Mouse actions 114

6.4 Default files 114

6.4.1 Global defaults 115
6.4.2 Specific defaults 115

6.5 Co]orpalettes 115

97

100

SECTION 7 Detailed Resource Descriptions

7.1 TickMarks, Tick Mark Labels and Grids 117

7.2 LEGENDS 128

7.3 LABELBARS 128

117

2 NCAR INTERACTIVE Functional Specification

7.4 TITLES 129

7.5 MAPS 130

7.6 XYPLOT 143

7.6.3 XY Plot Control Paramelers

7.7 CONTOUR 152

7.8 VECTOR 157

7.9 STREAMLINE 157

7.10 Common 3D Resources 157

7.11 SURFACE 158

7.12 ISO-SUR.FACE 164

7.13 Annotation 191

7.13.1 LEGENDS 191
7.13.2 LABELBARS 194

145

SECTION 8 GLOSSARY 199

SECTION 9 NCL SYNTAX 209

9.1 BASIC SYMBOLS 209

9.2 PROGRAM STRUCTURE 210

9.3 EXPRESSIONS 211

NCAR Interactive Functional Specification 3

4 NCAR INTERACTIVE Functional Specification

Introduction

SECTION 1 NCAR Interactive overview

1.1 Introduction

The goal of the NCAR Interactive project is to create, from

existing utilities, a fully integrated scientific visualization

environment. To be fully integrated, this environment must

provide a means of reading and writing data, a means of

manipulating that data, and a means of visually analyzing the

data interactively. It must be easy to use, work efficiently, and
be user-extensible. Furthermore, this environment must

support users with a wide range of skill levels: from users with

extensive programming and technical skills to users who have

not developed these skills.

Integrating interactive data access and manipulation with the

visual analysis techniques of NCAR Graphics into one system
will have tremendous benefits to current and future users of

NCAR Graphics. In many cases, users will no longer need to

write custom data-reading code as a prerequisite for producing

graphics. The process of tailoring a data plot for a publication
will be greatly simplified and accelerated. Users will be able to

develop customized plot specifications that can be saved and
reused. New users will have multiple ways in which they can

learn to use NCAR Graphics. Users who develop applications

with NCAR Graphics will find the new API to be consistent

across utilities and supportive of many interactive demands.

Three major components of the NCAR Interactive system will

accomplish these goals: a toolkit programming interface

library, a text-based data manipulation and graph specification

language interpreter, and a "point-and-click" graphical user

interface. All of these features, from the user's point of view,

accomplish the same result: a user-specified display of data.
Figure 1 shows the overall system architecture.

NCAR Interactive Functional Specification

PAC_i_ _ I_T FILMIEI0-

5

i

NCAR Interactive overview

FIGURE 1 System Structure

X Windows Display

Data Output and Input Files

G

J

Q

Points and Clicks

Graphical User Interface

Data
Importation
and
Exportation

Commands

NCL Internal
Data Model

NCAR Command Language
Interpreter

I Function Calls

Xll
Protocol

_High Level Utilities constructed out of current NCAR Graphics

with various enhancements Library "_

Graphics output files (CGM, NRIF, HDF,...)

6 NCAR INTERACTIVE Functional Specification

Introduction

The toolkit programming interface library needs to be

developed from the existing NCAR Graphics code. From now
on, this toolkit library is called the High Level Utilities

(HLUs). The HLUs will be a new interface to the NCAR

Graphics library with a great deal of the underlying low-level

implementation details hidden from the application

programmer.

The main purpose is to extend NCAR Graphics to support the
demands of interactive graphics, primarily giving users the

ability to change features of the output frame efficiently and

quickly. Other features, like being able to retrieve information
about the current state of an HLU and retrieving data

coordinate information, need to be built into the HLUs.

Other purposes of the new programming interface to NCAR

Graphics are to introduce a new level of interface consistency
between utilities and to consolidate most of the existing

functionality into a new set of high level utilities that produce
the same or better results, but reduce the overall complexity of

the package. This will make learning NCAR Graphics at the

programming level much easier. The toolkit should have entry

points from both FORTRAN and C, but may be written in

either language.

The heart of the system is the data manipulation and graph

specification language, from now on called the NCAR

Command Language (NCL). NCL will allow users to import

data from a variety of data formats including ascii files,

interactively manipulate the data, and render the data.

Interactive data manipulation includes selecting region-of-

interest data, thinning data, interpolating irregular grids to

regular grids, performing curve fits, removing corrupted data

points, and performing useful transformations such as unit
conversion. Because of resource constraints and potential

oversights in exactly what type of data manipulation is needed,
NCL must allow the user to incorporate customized data

NCAR Interactive Functional Specification 7

NCARInteractiveoverview

manipulation and data ingestion methods into NCL in the form
of user-defined functions.

Data rendering is primarily what NCAR Graphics has done all

along. NCL will allow users to generate plots in various styles

for 1D, 2D, and 3D data. These plot styles include but should

not be limited to line, scatter, contour, histograms, isosurface,

streamline, and 3D volume rendering. Capabilities for

annotation and labeling are also required. Screen animation

capability should be added as soon as possible.

The NCAR Interactive GUI should provide a "point-and-
click" abstraction of NCL. Through the use of menu bars,

buttons, scale bars, and direct manipulation, the user should be

able to easily and intuitively manipulate data and specify plots.
The GUI should produce NCL source code as output.

1.2 Guide to this document

This document is a communication tool connecting the

programmers assigned to this project and the user community.

The decisions this document seeks must be made now; they

will affect NCAR Graphics for several years. These decisions

concern the design of NCL, the organization and functionality
of the HLUs, and the look and feel of the GUI. After the

design of this application is finished and coding begins, major

alterations in functionality may not be undertaken for years.

Users and programmers share responsibility for this project;

they need to communicate clearly and often to complete it

successfully. This document describes our current plans, and
we need user input to either confirm or alter these plans as

soon as possible.

Because different users have different needs and intended uses

for this software, this section outlines this document so

reviewers can read about the features and functionality that
concern them most.

8 NCAR INTERACTIVE Functional Specification

Guideto thisdocument

1.2.1 Software and hardware requirements

These sections outline the software libraries, operating

systems, and architectures that NCAR Interactive will use. The

hardware section also contains a list of the hardware output

devices. The software section lists the output file formats used

for storing data and graphics.

1.2.2 High Level Utilities

As mentioned, a set of new programming interfaces to the

NCAR Graphics utilities is being developed to support this

project. This set of interfaces is called the High Level Utilities

(HLUs). It is important to distinguish between the NCAR

Interactive application and the High Level Utilities

programming interface. The NCAR Interactive application

uses the HLUs, and the HLUs are just a library that any

programmer can use to develop programs.

The HLU sections are mainly meant for programmers who

may use the new interfaces to NCAR Graphics to build

applications, specifically interactive applications. The features

and capabilities of this new API are outlined briefly in the

section titled "New programming interface to NCAR Graphics

(High Level Utilities)". A more detailed description of the

features provided by each of the HLUs can be found in the

section titled "Detailed resource descriptions."

Since the HLUs are just a toolkit, there are no built-in data

access and manipulation routines; application programmers

must still read, write, and process data. However, the NCAR

Interactive application will have built-in data handling

capabilities.

Users who want to understand more about the graphics

capabilities of the NCAR Interactive application should read

the first section on the High Level Utilities.

NCAR Interactive Functional Specification 9

NCARInteractiveoverview

1.2.3

1.2.4

NCAR Command Language

The NCAR Command Language (NCL) provides interactive

data access and manipulation, a fundamental requirement for

interactive visualization systems. The NCL also serves to

import and export data in various formats and to configure the

output graphics.

It is very important to understand how the command language

fits into NCAR Interactive. There are three intended uses of

the NCAR command language. First, the command language

can serve as a text-based interface to NCAR Interactive when

it is not possible to use an X-Window workstation or terminal.

Second, scripts written in the command language can be

submitted to the NCAR Interactive cormnand language

interpreter. The interpreter then executes the submitted script

in a batch style mode. Finally, there are two ways the NCAR

Command Language fits into the NCAR Interactive graphical

user interface. The GUI can generate command language

scripts, which can then be used for batch production of

visualizations. In addition, scripts can be typed into the GUI,

when selecting data, to process selected data or to derive new

datasets from several datasets.

Because the command language is such an integral part of the

NCAR Interactive application, it is recommended that all

intended users of this application read this section.

Programmers who are only interested in the High Level

Utilities toolkit specification probably don't need to read the

command language specification.

The Graphical User Interface

This section provides a general description of the various GUI

components and their functionality. This section describes

what users should be able to do using the GUI.

10 NCAR INTERACTIVE Functional Specification

Guidetothisdocument

A general interaction and usage model is not provided in this
section. This is being developed by presenting GUI prototypes

and mock-up to users and responding to their feedback.

Describing GUIs in a textual manner is difficult and inefficient
at best. As user interface conventions are adopted, they will be

added to this document. For the time being, this section serves

only as a reference to what the GUI will do. It does not

describe how it operates.

Users who are interested only in the GUI for NCAR
Interactive should read this section first.

NCAR Interactive Functional Specification 11

NCARInteractiveoverview

12 NCARINTERACTIVEFunctionalSpecification

SECTION 2 SOFFWARE REQUIREMENTS

NCAR Interactive must use the utilities defined in the NCAR

Graphics 4.0 distribution plus the PolyPaint 3-D rendering
source.

NCAR Interactive should operate on the latest versions of

operating systems that are available upon release. Currently
these include:

• SunOS (4.0.3 and 4.1),

• ULTRIX (4.2)

• UNICOS (6.1)

• AIX (3.1)

• IRIX (3.3)

NI should use the latest versions of Xll and Motif which are

currently R5 and 1.1.3 respectively.

The following input data format libraries should be used:

netCDF, HDF, CDF, ascii, FORTRAN, and C binary. Perhaps

FITS, VIFF (KHOROS), and AVS fields should be supported.

For output, the main format will be CGM. Translation to HDF,
Sun raster, NRIE and X Window dump formats will be

supported.

NCAR Interactive Functional Specification

P_GIZ _ .NOT FN,.MI_D

13

SOFTWARE REQUIREMENTS

14 NCAR INTERACTIVE Functional Specification

SECTION 3 HARDWARE REQUIREMENTS

NCAR Interactive should port to the following systems which

are currently supported for NCAR graphics:

• CRAY Y-MP and CRAY X-MP

• Digital Equipment DECstation

• IBM RISC System/6000

• Silicon Graphics IRIS 4D-series

• Sun-3, Sun-4, and Sun SPARCstation

• HP 9000 series 700 workstations

• Any systems to be added to this list for the Version 4.0 release of

NCAR Graphics should also be supported.

Hardware features of high-end workstations, which many of

our users may not have, should be a low priority. Since the

primary output mechanism will still be CGM and NRIF files,

there are no output hardware requirements from the point of

view of the NCAR Interactive package.

NCAR Interactive Functional Specification 15

HARDWARE REQUIREMENTS

16 NCAR INTERACTIVE Functional Specification

Overvfew

SECTION 4 New programming interface to

NCAR Graphics (High Level

Utilities)

4.1 Overview

The High Level Utilities (HLUs) being created as a new

interface to NCAR Graphics will not replace the current

Fortran interface. The existing Fortran interface wil continue

to be supported. The new interface will facilitate the

development of NCAR Interactive. However, this

newinterface also has a number of advantages to the end user.

One of the dominant user comments is "NCAR Graphics is

hard to learn and use." The reason NCAR Graphics is hard to
learn and use is that the various utilities do not have a

consistent interface, memorization is often required to know
which functions to call in what order, there is too much room

for undetected user error, and NCAR Graphics does not

accommodate users of multiple skill levels. In fact, current

users must be NCAR Graphics experts to produce the simplest
data plots.

The primary goal in designing the HLUs is to provide a
consistent visualization model to the user. Standard sets of

configuration parameters, called resources, will be developed

for each HLU and, where applicable, different utilities will

share resource names to provide consistency. Objects like

titles, tick marks, labels, legends, and label bars will be named

consistently.

NCAR Interactive Functional Specification

p_ P_C._ IRANI(NOT FtLME]0

17

|

New programming interface to NCAR Graphics (High Level Utilities)

These sets of configuration parameters will provide much of

the capability of the current version of NCAR Graphics

utilities, but some of the configurability of an existing utility

may not be included in some cases. Users who have extremely

specialized needs will still have to use the existing Fortran
interface, but users who want to create visualizations easily
will be able to do so. The HLUs will include the most

commonly used features of the current utilities. The HLUs will

not require any changes to existing user code. @ @ @verify!!!

The HLUs will also support the demands of interactive

programs. Functions for retrieving graphics state information

from an HLU will be provided. For example, every 1D and 2D
HLU will be able to transform normalized device coordinate

(NDC) pairs into data space coordinate pairs. Also, every HLU

will be able to determine if an NDC pair is in its viewport area.

These types of functions will facilitate "point-and-click"

application development.

4.2 HLU usage

The number one change in the programming interfaces to

NCAR Graphics is to introduce the concepts of abstraction and

information hiding. The HLUs employ the abstraction that

every plot is an object that is created and can be manipulated

through a series of argument-setting routines. This allows the
HLUs to hide time-consuming data control tasks from the user.

For those familiar with X Window programming, the

mechanisms for creating and specifying plots will be similar,

but far simpler.

The current version of NCAR Graphics treats the data plot as

the result of a sequence of function calls. This is not an
intuitive model, and users do not learn it easily. It often leaves

the user guessing at the way a function call affects the output,

and it makes programs extremely hard to alter or extend.

Furthermore, current NCAR Graphics requires the user to

18 NCAR INTERACTIVE Functional Specification

HLUusage

manage various internal data structures like work arrays and

common blocks. For example, a difficult abstraction is the area

map needed by the Areas utility. The user must specify how

big this array is, initialize it, and coordinate different utilities

that draw into it. This is a very complex task, and it represents

a lot of overhead for beginners.

The new HLUs will manage the graphics state of NCAR

Graphics on behalf of the user. With the new HLUs, there will

be only a few standard functions needed by the user to

manipulate the graphics state. The names of these have not

been defined, but the following is a list of these functions:

init initializes the graphics device.

create creates an instantiation of a plot style.

loaddef loads defaults from a user-specified defaults file. This allows for plot
configuration outside of the program.

setarg used to set all single-value resources for a plot style.

arraysetarg used to set resources that require arrays.

getarg used to retrieve values of resources for a plot style.

arraygetarg used to retrieve values of resources that are arrays.

draw draws a plot onto the output frame.

destroy removes an instantiation of a plot style from the graphics state.

overlay assigns one instantiated plot to be the overlay of another.

update erases and redraws a graph without advancing the frame.

frame erases current output frame and prepares a new one.

end closes the graphics device.

load_defaults loads a user-specified default resource file.

dump_defaults writes all current resources for a given plot style into a defaults file.

These functions will be used as follows: init must be called at

the beginning of the user's program. The user can then load a

defaults file with the loaddefs function (the syntax of the
defaults file is covered later). The defaults file has two main

NCAR Interactive Functional Specification 19

NewprogramminginterfacetoNCARGraphics(HighLevelUtilities)

uses. First, it lets the user customize the default parameters

used when plots are created, and second, the user can configure

the output of a program by editing the defaults file without

recompiling the program.

The user can then create instantiations of the plot styles he

wants to use. Create returns a unique id that represents the

instantiation of the requested plot style. Each plot id must be

thought of as a unique data plot that "knows" how to draw

itself based on its input resources.

Next, the user can alter the default configuration of the plot

style by calling the serarg function with three pieces of

information as parameters: the plot id, the resource name, and

the resource value. The setarg function only alters the state of

the plot whose plot id was passed to it. The arraysetarg sets

resources that are arrays. This is fundamentally different than

traditional NCAR Graphics because arguments don't affect a

global graphics state but only the graphics state of the

instantiated plot.

The overlay function assigns one instantiated plot to a base

plot. When a plot is tagged as an overlay, it inherits the data

and viewport transformations from the base plot. In some

circumstances, some of the overlay plot's resources may be

pre-empted by the resources of the base plot.

The display function draws a plot onto the output frame. The

display function takes a plot id and draws the plot described by

the resources assigned to that plot id. If the plot selected is a

base for any other plots, the other plots are drawn at the same

time on top of the base plot.

The destroy function removes a plot id from the current list of

plot ids and frees any storage space used by the plot. Update

forces a redraw of a plot. However, the entire plot is not

recomputed; only the portion that has been altered or changed.

20 NCAR INTERACTIVE Functional Specification

HLU usage
.=.

If nothing has changed, the plot is merely redrawn. Frame

erases the current output frame and prepares a new one. End

closes the graphics device.

The load_defaults function allows the user to load a predefined

set of default resources to use when creating plots. The

dump_defaults function creates a defaults file for any given

plot id. The defaults file can then be used again to create the

same configuration for the given plot style.

The following is a pseudocode example of what a user

program might look like to create a contour plot with a map
using default color and contour specifications. Please note that

the data-reading functions are commented as user defined

functions. Programmers using the HLUs are still responsible

for reading, writing, and processing data themselves. If you are

interested in the built-in data handling capability, please refer

to the "NCAR Command Language Specification."

init(X11);
load defa ults ("- et hanldefa uIts");
pid = create(CONTOUR);
setarg(pid,Nmp,True);
setarg(pid,NmpOutlineType,PS);
setarg(pid,NmpProjection,OR)
zdat = readmydataone0;
setarg(pid,NcnXdatamin,0.0);
setarg(pid,NcnXdatamax,180.0);
setarg(pid,NcnYdatamin,0.0);
setarg(pid,NcnYdatamax,90.0);
setarg (pid,NcnZdat,zdat);
setarg(pid,NcnNumX,30);
setarg(pid,NcnNumY,40);
setarg(pid,NtiMain,"DATASET 1");
draw(pid);
frame();
zdat = readmydatatwo0;
setarg(pid,NcnZdat,zdat);
setarg(pid, NtiMain,"DATASET 2");
draw(pid);
frame();
end();

/* specifies Xll output */
/* loads default resources */

/* instantiates contour plot */
P turns map on*/
/* sets outline style */
/* sets projection style */
/* user routine that reads data */

/* sets data coordinate boundary */
/* sets data coordinate boundary "/
/* sets data coordinate boundary */
P sets data coordinate boundary */
P sets data array "1
P sets dimensionality of data */
/* sets dimensionality of data */
/* sets title for frame one */

P draws plot on screen */
/* advances the frame */

/* user defined data-reading func.*/
P resets the data array */
/* sets title for frame two*/

/* draws new plot */
/* advances final frame */
/* closes graphics device */

NCAR Interactive Functional Specification 21

New programming interface to NCAR Graphics (High Level Utilities)

This example creates two frames of output. After the plot id

"pid" has been configured, the next frame only needs to

change the resources that have changed--the title and the data

array in this case. The two data arrays are assumed to be the
same dimension.

The preceding example also demonstrates how the HLUs

work. A plot id is returned after the plot is created. Now the

configuration of that plot can be changed at will by calling

setarg and providing the plot id, the resource name, and the
resource value to the setarg function. Since the map projection

did not change between draw calls in the example, the second
draw does not recompute the map projection; it merely uses

the map segment that was computed during the first draw call.
The second draw call only computes the new contours from
the new data and sets the new title string in the appropriate

place.

Another item demonstrated in the example is the

load_defaults function. This function reads in a user defaults
file. A user defaults file can contain custom default resources.

Essentially every resource that can be set with a setarg
function can be set in a defaults file. Users can develop sets of

defaults files for different visualization applications.

Furthermore, resources that are set in a defaults file can be

changed without recompiling the application. This allows

users to change everything from fonts to colors without

recompiling their code. The user defaults file is described later
in this section.

This HLU section gives a very brief description of how the

HLUs are different from current NCAR Graphics and indicates

how they will function. A more in-depth discussion of the
utilities and their resources follows.

The concept of a resource is fundamental to understanding the

HLUs. In the previous paragraphs, the resource was described

as a configuration parameter. Essentially, a resource is a piece

22 NCAR INTERACTIVE Functional Specification

HLU usage

of information used by an HLU to determine how to configure

its output. As the example showed, resources can control a

variety of configurations. Some resources like fonts, lines,

colors, fill patterns, tick marks, titles, tick mark labels, and

map settings are set the same and behave the same across

similar HLUs. Others, such as resources that specify contour

levels for contour plots and resources that set line styles for X-
Y plots are different and specific to each HLU.

This HLU section is organized into four parts. The first

describes a global resource set. The second describes common

basic resources, which are basic objects like fonts, lines, and

symbols. The third part discusses common composite

resources. These are resources that are built up of the basic

objects like tick marks, labels, maps, and titles. The final part
describes each of the HLUs in detail, as well as each of the

HLU-specific resources. The next figure provides a model to

help you visualize the organization of the composite resources
and the HLU.

NCAR Interactive Functional Specification 23

||

New programming interface to NCAR Graphics (High Level Utilities)

FIGURE 2 Anatomy of a Plot Style

Anatomy of a plot style/_Ann°ta__///

/_Titles _

_Labels _

Label bars /

Legend/

_& BiCk marks /

orders/

Segments that share //_M_,_- _ [
data transformation v |

OVerlay /ot
____Baekground /

Global resources

24 NCAR INTERACTIVE Functional Specification

HLUefficiency

4.3 HLU efficiency

This information is incidental to the current section. It is

included because initial reviewers of this functional spec

expressed many concerns about efficiency.

TThe efficiency of the HLUs is a very important concern if the

HLUs are to adaquetely support the demands of interactive

graphics. Initially, the HLUs will be implemented using the

NCAR Graphics 3.0 utilities. Because of this, much of the

efficiency is bound by the efficiency of the low-level

implementation of NCAR Graphics. However, initial tests

show many areas where the HLUs could enhance the

efficiency of NCAR Graphics.

The most significant advance in efficiency is gained by

segmenting the plot produced by an HLU into the groups listed

in Figure 2 on the preceding page. This enables one group to
be changed and redrawn without having to recompute the

remaining groups. For example, tests show that sub-second

response time can be achieved for updating every group except

the maps and the base plot of an HLU. This means that

changing tick mark style, fonts, labelbars, and legends can be

done very quickly.

Other tests show that most of the execution time of an NCAR

Graphics program is in the Areas utility. The most common

way to slow down an NCAR Graphics program is to only use

one area map and draw everything into it. The algorythms used

by Areas slow down exponentially as the number of elements

in area map grow. Separating the plot into several small area

maps speeds execution. In a test example, a color-filled

contour plot with a map masking out the land was drawn in

two-fifths of the time simply by separating the contour areas

from the map areas.

NCAR Interactive Functional Specification 25

New programming interface to NCAR Graphics (High Level Utilities)

4.4 Resource naming conventions

Resources are grouped by function, so their naming

convention reflects this grouping. There are three kinds of

resources: common resources, common composite resources,

and plot-specific or HLU-specific resources. Common

resources are common objects used throughout the HLUs; they
cannot be set by users. For example, a common resource is

Font--it does nothing by itself. However, when joined with

Nti (the titling composite resource) and Main (the main title of
the HLU) to form NtiMainFont, this new resource sets the

font for the main title of its HLU. The following list shows
how the Font common resource is used in different common

composite resources.

NtmLabelFont

Nlg'l'itleFont
NlbTitleFont

NlgLabelFont

Sets font for tick mark labels.

Sets font for legend title.
Sets font for label bar title.

Sets font for labeling items in a
legend.

The names of common resources are outlined in section 4.7

and composite resources are outlined in section 4.8. Table 1

below lists the three character codes used to identify the group

to which a resource belongs. The three character codes for

identifying HLU-specific resources are listed in Table 2.

26 NCAR INTERACTIVE Functional Specification

Resource naming conventions

TABLE 1 Resource naming conventions for common composite resources

Prefix Resource class

AnnotationNan

Nti Title

Ntm Tick Mark

NIb Label Bar

Nmp Map

Nbk Background

Nvp

Nlg

Nbo

Viewport

Legend

Border

Ngb Global

TABLE 2 Resource naming conventions for High Level Utilities

Prefix HLU name

Ncn Contour

Nvr Vector

Nsr Surface

Nis Iso-Surface

Nsl Streamline

Npp PolyPaint

Nxy X-Yplot

Nhs Histogram

N3d Common Surface and Iso-surface

NCAR Interactive Functional Specification 27

New programming interface to NCAR Graphics (High Level Utilities)

4.5 User defaults file

A function will be available to allow users to load a defaults

file when executing their program. The defaults file can

contain any of the resources for any of the plot styles. The

defaults are used whenever a plot is instantiated with the create

function. The user can override the defaults by changing the

specific resource with the setarg function, but the user must

then recompile the program. By changing resource values in

the user defaults file, small changes in plot configuration can

be made without recompiling the program. Users can set the

resources in the user defaults file by entering the resource

name followed by a colon and the value for the resource. The
following is what a default resource file might look like for an

X-Y plot.

Nvpx :. 10
Nvpy : .90
NvpWidth : .80
NvpHeight : .80
NtiMain : Main Title
NtiMainFont : Times-Roman
NtiMainFontSize : .04
NtiX : X-Axis Title
NtiXFont : Times-Roman
NtiY : Y-Axis Title
NtiYFont : Times-Roman
NtiXFontSize : .03
NtiYFontSize : .03

NtmXGroup :True
NtmYGroup :True
NtmXMajorLength : .009
NtmXMinorLength : .0045
NtmXMinorPerMajor : 1
NtmXLabelFont : Times
NtmXLabelFontSize : .02

NtmYMajorLength : .009
NtmYMinorLength : .0045
NtmYMinorPerMajor ."1
NtmYLabelFont : Times-Roman
NtmYLabelFontSize : .02

NtmXStyle : Linear

28 NCAR INTERACTIVE Functional Specification

User defaults file

NtmYStyle : Linear
NtmXMode : Manual

NtmYMode : Manual

NtmXStart : 0

NtmYStart : 0

NtmXEnd :10

NtmYEncl : 10

NtmXSpacing : 2

NtmYSpacing : 2

When it is loaded, this example default resource file would

configure the viewport, titles, and tick marks for any 1-D or

2-D plot. The following figure is what a plot, created using the

above resources, might look like.

l0

2

I

6w

>. 4

Main Title

I ' t ' I ' I '

I I q i 1 _ ,I I
0 2 4 6 8 l0

X-Axis Title

NCAR Interactive Functional Specification 29

Newprogramminginterfaceto NCARGraphics(HighLevelUtilities)

4.6 Global resources

Global resources are resources used by all instantiated plots. A

special plot id value will be assigned to these resources. Users

set global resources with the standard NCAR Interactive

resource-setting procedure.

4.6.1 Color

A color map of 256 colors is allowed by NCAR Graphics. The
HLUs will have the same restriction. Each of these colors will

be indexed from 0 to 255. The currently planned color model

is RGB. However, HLS and some other color models should

be made available as soon as possible. Whenever a color index

is set in any plot resource, the index refers to the global color

map.

A set of default color maps will be made available when the

HLU library is released. These default color maps are in the
form of a user defaults file; it can be loaded just like any other

defaults file.

Support for 24-bit color should be added as soon as possible.

The following color resources will be included:

4.6.1.1 NgbColor

Switches between indexed color and gray scale colors.

4.6.1.2 NgbColorMap

A color map can be set by passing an array of red, green, and

blue as the argument to this resource.

4.6.1.3 NgbColorMapLen

Specifies the number of colors in the color map that is loaded.

3O NCAR INTERACTIVE Functional Specification

Ill

Global resources

4.6.2 Fill patterns

Users will be able to choose from a set of predefined fill

patterns. Fill patterns can be chosen with an index number, the

same way colors are chosen. Users can select an indexed fill

pattern or create their own and add them to the fill pattern list.

Areas, like contours, can be assigned both a color and a fill

pattern.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

"FILL INDEX"

The predefined set of fill patterns are indexed, and whenever a

fill pattern is set, an index number is placed into the global fill

pattern table.

The following fill pattern resources will be included:

4.6.2.1 NgbFillMap

The global resource that contains all valid fill patterns.

4.6.2.2 NgbFilLMapLen

The number of currently defined fill patterns in the fill map.

NCAR Interactive Functional Specification 31

New programming interface to NCAR Graphics (High Level Utilities)

4.7 Common basic resources

This section describes objects that are common to all utilities.

These objects include text, color, lines, and fill patterns. These

objects and their resources are used by all of the HLUs and by

composite resources. Names are given to these resources, but

they may change when a resource-naming convention is

adopted. Furthermore, these names reflect how the C binding

interface will look. The Fortran bindings will be developed

after a complete specification of the resources is finished

When a basic object is used by a composite object, the name of

the composite object is inserted into the resource name. For

example, LineThickness becomes GridLineThickness when

setting the thickness for the composite object grid.

4.7.1 _xt

Text is a basic resource that uses subresources to configure the

output. The following list of text resources includes a

description of the information needed to set them.

4.7.1.1 Font

The output font can be selected by passing a two-character

code representing the font type. Currently the fonts can be:

HERSHEY:CARTOGRAPHIC_ROMAN
HERSHEY:CARTOGRAPHIC_GREEK
HERSHEY:SIMPLEX_ROMAN
HERSHEY:SIMPLEX_GREEK
HERSHEY:SIMPLEX_SCRIPT
HERSHEY:COMPLEX_ROMAN
HERSHEY:COMPLEX_GREEK
HERSHEY:COMPLEX_SCRIPT
HERSHEY:COMPLEX_ITALIC
HERSHEY:COMPLEX_CYRILLIC
HERSHEY:DUPLEX_ROMAN
HERSHEY:TRIPLEX_ROMAN
HERSHEY:TRIPLEX_ITALIC
HERSHEY:GOTHIC_GERMAN
HERSHEY:GOTHIC_ENGLISH

32 NCAR INTERACTIVE Functional Specification

Common basic resources

HERSHEY:GOTHIC_ITALIAN
HERSHEY:MATH_SYMBOLS
HERSHEY:SYMBOL_SET1
HERSHEY:SYMBOL_SET2

4.7.1.2 FontSize

The size of the font is a very tricky thing to specify. For

simplicity, only one font sizing model is used in the HLUs.

The size for a font is expressed as a fraction of the size of the
output frame coordinates. This is how fonts will be sized

unless the text being drawn is part of a composite resource.

4.7.1.3 FontAspect

A font's aspect ratio specifies a character's width with respect

to its height. A value of one means that the height and width of

each character are equal. A value of .5 means that the width of

each character is half its height.

4.7.1.4 FontThickness

Since all NCAR Graphics fonts are stroked fonts, a line

thickness must be set. Just as the font size is represented as a

fraction of the output frame coordinates, the line thickness is

also set this way.

4.7.1.5 FontColor

Each HLU shares the color map defined as a global resource.

4.7.1.6 Text Just

Text justification does not have anything to do with fonts, but

it is an attribute of setting text. Below is a picture with a

rectangle drawn around a piece of text. This rectangle is called

NCAR Interactive Functional Specification 33

New programming inter/ace to NCAR Graphics (High Level Utilities)

the text bounding box. There are nine points on the box: one at

each corner, one at the midpoint of each edge, and one in the

center. These are the points about which text can be justified.

4.7.1.7 TextPosX & TextPosY

When text location is not automatically set by the utility, a

coordinate pair must be specified to set the text. The

justification point set with TextJust is positioned at these
coordinates. These coordinates are in output frame
coordinates.

4.7.1.8 TextAngle

This is an angle, expressed in degrees, by which the text is

rotated around the justification point.

4.7.1.9 Textltem

This is the string that is printed onto the output frame. This text

string uses the same function codes that have been used in

NCAR Graphics in the past. Therefore, a great deal of

configurability of the output string is possible. Function codes
are discussed in the Plotchar section of the NCAR Graphics,
Version 3.00 manual.

4.7.2 Lines

Lines are a bit simpler than fonts. Lines can have color,
thickness, dash pattern, and smoothness. The following line
resources will be included:

34 NCAR INTERACTIVE Functional Specification

Commonbasicresources

4.7.2.1 LineThickness

Set as a fraction of the size of the output frame.

4.7.2.2 LineDashPattern

Controls the sequence of dash characters used to draw the line.

The dash pattern is set in the same way as the Dashchar utility

described in the NCAR Graphics Version 2.00 manual.

4.7.2.3 LineDashLength

Controls the length of each dash. This resource is set as a

fraction of the output frame size.

4.7.2.4 LineColor

Sets the color of the line in the same way as FontColor.

4.7.2.5 LineSmooth

Turns on and off the line smoothing features described in the

NCAR Graphics Version 2.00 manual.

4.7.3 Arrays

Several resources are arrays used throughout the HLUs. There

are two ways users can set these resources. One is to use the

arraysetarg function discussed previously. The other way is
to use a combination of two resources. One resource is the

resource name of the array and the other is an index into that

array. Every array resource has a specific resource with the

word "Index" appended to it. This resource can be set to an

index into the main resource being set. For example, the X-Y

plot allows the user to have multiple data curves. Each of these

curves can have a unique dash pattem. To set the first curve's

dash pattern, the NxyLineIndex resource is first set to I; when

the NxyLineDashPattern resource is set, it is set for the first

curve only.

NCAR Interactive Functional Specification 35

NewprogramminginterfacetoNCARGraphics(HighLevelUtilities)

4.7.4.1

4.7.4 Background color

One resource will be included to control background color.

NbkColor

Specifies the background color for the plot.

4.7.5 Size and viewport

The following resources will be included to control size and

viewport.

4.7.5.1 NvpX and NvpY

Sets the X and Y coordinates for the upper left corner of the

viewport in output frame coordinates.

4.7.5.2 NvpWidth and NvpHeight

Sets the width and height of the viewport in output frame
coordinates.

4.8 Common composite resources

Common composite resources are resources located in more

than one HLU; they are made up of basic resources, lines, text,

and colors. Tick marks, tick mark labels, grids, legends, label

bars, titles, and maps are all examples of common composite
resources.

4.8.1 Tick marks, tick mark labels, and grids

The most common types of tick marks are tick marks for 1D

and 2D plots. M1 of the tick mark resources listed here are for
both the X and the Y axis unless otherwise stated.

36 NCAR INTERACTIVE Functional Specification

Commoncompositeresources

Each axis can also be divided into sides, (i.e. top, bottom,

right, and left). The resources listed in this section are generic,

so the top, bottom, left, right and axis have been removed from

the resource name. In reality, each resource is prepended with

this information. For example, the TickMarkSpacing resource

is really four resources called XTTickMarkSpacing,

XBTickMarkSpacing, YRTickMarkSpacing, and

YLTickMarkSpacing. Separating the resources in this way

allows users a great deal of flexibility as they configure the tick

marks of their plots.

Since composite resources are generated by an HLU, all of the
sizes for text and lines are relative to the maximum viewport

range. This is done so that sizes can be more easily judged by
the user. Furthermore, the tick mark border is drawn around

the viewport and the tick marks share the data transformation

of the base plot, or HLU. When tick mark resources accept
data values, the underlying data transformation of the HLU is

used to map the value to screen coordinates.

There are many ways tick marks can be configured. This

section covers resources that affect the output of all styles of

tick marks first; it then covers resources specific to certain

styles of tick marks. These styles are log, linear, time, and

geographic coordinates.

Note that all of the resources in this section apply only to plots

produced without maps. Grids, tick marks, and labels for plots
using one of the mapping transformations are covered in the

Maps section of this document.

To disable tick marks completely, set the TickMode resource
to NONE.

NtmXGroup & NtmYGroup Groups top and bottom, and right and left axes together.

NtmMajorLineThickness Sets line attributes for major tick marks.

NtmMajorLineColor

NCAR Interactive Functional Specification 37

NewprogramminginterfacetoNCARGraphics(HighLevelUtilities)

NtmMinorLineThickness Sets line attributes for minor tick marks.

NtmMinorLineColor

NtmMajorLength & Sets the major and minor tick mark length.
NtmMinorLength

NtmMinorPerMajor Sets the number of minor tick marks per major tick mark.

Set the text attributes for the tick mark labels.NtmLabelFont
NtmLabelFontSize

NtmLabelFontAspect
NtmLabeIFon t Col or
NtmLabelTextJust
NtmLabelFontThickness

NtmLabelTextA ngle

NtmLabelOffset Displaces the tick mark label justification points from their default
position.

Defines border style.NtmBorder

NtmBorderLineDashPattern
NtmBorderLineColor

NtmBorderLineDashLength
NtmBorderLineThickness

NtmAxisControl Defines how tick mark axes are drawn.

NtmAxisLocation Displaces the tick mark axis up or down, or left or right.

Draws a grid connecting major tick marks.NtmMajorGrid

NtmMajorGridLineDashPattern
NtmMajorGridLineDashLength
NtmMajorGridLineColor

NtmMajorGridThickness

NtmMinorGrid
NtmMinorG ridLineDashPattern

NtmMinorG ridLineDashLength
NtmMinorG ridLineColor
NtmMinorGridLineThickness

Draws a grid connecting minor tick marks.

NtmMajorOutwardLength Specifies portion of major tick mark to be drawn outward.

NtmMinorOutwardLength Specifies the portion of the minor tick marks to be drawn outward.

NtmLabelFormat Set the numeric format for the tick mark labels.

NtmLabelFormatExponent Sets exponent when scientific notation is used.

NtmLabelFormatFraction Sets fraction when scientific notation is used.

NtmSt)'le Selects between log, linear, geographic, and time tick mark styles.

Selects between none, automatic, manual, and explicit tick mark
NtmMode modes.

NtmMaxTicMarks - Automatic 'Sets the maximum number of allowable tick marks.

Mode

38 NCAR INTERACTIVE Functional Specification

Commoncompositeresources

NtmStart - Manual Mode Sets the starting data value for tick marks.

NtmEnd - Manual Mode Sets the ending data value for tick marks.

NtmSpacing - Manual Mode Sets the interval between major tick marks.

NtmSpacingType - Manual Mode Selects between three different ways of using TickSpacing.

NtmMinorStart - Manual Mode Sets the starting data value for minor tick marks.

NtmMinorEnd - Manual Mode Sets the ending data value for minor tick marks.

NtmValues - Explicit Mode Sets data value for each tick mark.

NtmValueIndex

NtmNumTicks - Explicit Mode Sets the number of tick marks total.

NtmLabels - Explicit Mode For each tick mark specified in TickMarkValues, this sets a tick mark
NtmLabelIndex label string to use.

NtmMappingOrder Specifies if axis is increasing or decreasing.

NtmGeoTickStyle Selects between various ways of labeling latitude by longitude
coordinates.

NtmGeoTickAxis Sets the axis to either latitude or longitude.

NtmTimeTickStTle Selects between various ways of labeling time tick marks.

NtmTimeDataBase Sets the starting time of the axis.

NtmTimeDataSpacing Sets the time interval between data points.

NtmTimeTiekStart - Manual Sets the starting time of the first tick mark.

NtmTimeTickEnd - Manual Mode Sets the ending time of the last tick mark.

NtmTimeTickSpacing - Manual Sets the time interval between tick marks.
,Mode

Explicit Mode Time Ticks Should be analogous to Explicit mode for regular tick marks.

4.8.2 Legends

This section describes the resources that specify a legend.

Legends, like label bars (described below), are used as a key to

accompany a plot. Legends are very similar to label bars, but

they differ in that they define line representations (dash

patterns) and symbols rather than fill patterns. Legends can be

displayed vertically or horizontally and labels may appear on

any side.

NCAR Interactive Functional Specification 39

NewprogramminginterfacetoNCARGraphics(HighLevelUtilities)

The base plot to which the legend belongs provides all of the

symbol and line information automatically. For example, an

X-Y plot with five curves and five dash patterns will
automatically draw those five dash patterns and label them

with "curve A," "curve B," etc., if the NlgLegend resource for

the X-Y plot is turned on. Most of the legend resources are set

automatically by the HLU.

if the level of configurability is not adequate, the Annotation

HLU can create custom legends with complete configurability

by overriding the automatically set resources. Otherwise, the

dash patterns and symbols will be drawn in the order they are

used by the HLU. Tables 3 and 4 show resources that must be

set by the user and that are set automatically by the base plot.

TABLE 3. Resources not set by the base plot

NlgLegend Turns legends on and off.

NlgOrientation Sets vertical or horizontal ordering of legend elements.

NlgSymbolOrientation Sets vertical or horizontal symbol or line.

Nlgx These four resources set the coordinates of the upper left corner, and the
Nlgy width and height of the legend bounding box in output frame coordinates.

NlgWidth
NlgHeight

Sets the string and text attributes for each legend element.NlgLabelText
NlgLabelFont
i_qgLabelFontSize

NlgLabelFontThickness
NlgLabelFontAspect
NlgLabelTextAngle
NqgLabelFontColor

NlgLabelPosition

Places legend labels above, below, to left, or right of legend symbol or
dash.

40 NCAR INTERACTIVE Functional Specification

Commoncompositeresources

TABLE3. Resources not set by the base plot

N1gTitleText
NlgTitleFont
NlgTitleFontSize
NlgTitleFontThickness
NIgTitleFontAspect
NlgTitleTextAngle
NlgTitleFontColor

NIgDrawBorder
NlgBorderLineDashPattern
NlgBorderLineDashLength
NlgBorderLineColor
NlgBorderLineThickness

Sets string for legend box title and associated text attributes.

Draws the bounding box arround legend.

TABLE 4. Resources set automatically by the base plot

NlgElementType
NlgNElements

Nlglndex

NIgLineColor
NlgDashLineLength
NIgLineThickness
NlgDashPattern

NIgSymbol
NIgSymbolColor
NlgSymbolScaleFactor
NlgSymboiFillPattern

Each item displayed in the legend can be either a symbol or a line. This

resource keeps track of which is which and the total number of elements.

Selects current legend element when using the index scheme for setting
resources.

These resources are used when an element is a line.

These resources are used when an element is a line symbol.

4.8.3 Label bars

This section describes the resources that specify a label bar

object. Label bars are used as a key or legend to accompany a

plot. They consist of a rectangular, labeled bar that can be

colored and filled with a solid color or patterned lines. The bar

may be displayed vertically or horizontally, and labels may

appear on any side.

As with the legend resources, the color, number of boxes, and

the labels for each box are set by the HLU. Custom label bars

can be generated through the Annotation HLU. Table 5 lists
the label bar resources.

NCAR Interactive Functional Specification 41

NewprogramminginterfacetoNCARGraphics(HighLevelUtilities)

TABLE5. Resources that specify label bars

NIbLabelBar Turn label bar on and off

NlbOrientation Horizontal or vertical label bar.

NlbX Sets bounding box for label bar.

NlbY
Nlbwidth

Nlbheight

NlbAreaWidth Sets percentages of Nlbwidth and NlbHeight where labelbar will be

NlbAreaHeight drawn.

Sets strings for label bar labels and associated text attributes.NIbLabelText
NIbLabelFont
NlbLabelFontColor
NlbLabelFon tSize

NlbLabelFontAspect
NlbLabeITextAngle

NIbAlignment Places labels in middle of box, at left corner, or at right corner.

NlbLabelPosition Places labels at top, bottom, right, or left of the label bar.

NlbBoxLineColor Sets the line attributes for boxes surrounding label bar boxes..

NlbBoxLineThickness
NlbBoxLineDashPattern

NlbBoxLineDashLength

Sets string and associated text attriubtes for label box title.NIbTitIeText
NIbTitleFont
NlbTitleFontSize
NIbTitleFontColor
NlbTitleFontThicknes

NlbTitleFontAspect

NlbDrawPerim
NlbPerimLineThickness
NlbPerimLineDashPattern
NIbPe rimLineDashLength
NlbPerimLineColor

Draws a border around label bar bounding box.

42 NCAR INTERACTIVE Functional Specification

Commoncompositeresources

TABLE6. @@@

NlbNboxes

NlbBoxFiliPattern
NlbBoxIndex
NlbBoxColor

Number of current label bar boxes.

Fill pattern and color for each box.

4.8.4 Titles

Titles are special kinds of text items in which the position of

the text is defaulted to be at some fixed location above, below,

right, or left of the plot. The locations of X and Y titles will be

guaranteed not to interfere with the tick mark labels.

Resources for small adjustments up or down and left or right

are provided, as well as a resource for flipping the rotation of a

title. This is particularly useful for the Y axis title. It is often a

matter of taste how the Y axis title is positioned.

TABLE 7. @@@

NtiMainText
NtiMainFont
NtiMainFontSize
NtiMainColor

NtiMainTextJust

NtiMainFontAspect
NtiMainFontThickness

NtiMainTextAngle

Sets the main title of a plot.

NtiYAxisText
NtiYAxisFont
NtiYAxisFontSize
NtiYAxisColor

NtiYAxisTextJust

NtiYAxisFontAspect
NtiYAxisFontThickness

NtiYAxisXOffset Displaces Y-axis title from its default location.
NtiYAxisYOffset

NCAR Interactive Functional Specification 43

NtiMainXOffset Displaces title from its default position.

NtiMainYOffset

NtiMainPosition Title can be placed on left, center, or right portion of plot.

Controls Y-axis title.

New programming interface to NCAR Graphics (High Level Utilities)

TABLE 7. @@@

NtiYAxisPosition Y-axis title can be on left or right side of plot.

Contro]s X-axis title.NtiXAxisText
NtiXAxisFont
NtiXAxisFontSize
NtiXAxisColor

NtiXAxisTextJust
NtiXAxisFontAspect
NtiXAxisFontThickness

NtiXAxisXOffset Displaces X-axis title from default location.

NtlXAxisYOffset

NtiXAxisPosition X-axis title can be on top or bottom of p]ot.

4.8.5 Maps

Maps can only be used in the 2D utilities Contour, Vector, and

Streamline. In these utilities, maps can either be on or off.

Nmp

NmpProjeetion

NmpTicks
NmpTickLength
NmpTickThickness
NmpTickColor

NmpTickLabels
NmpTickLabelFont
NmpTickLabelFont Color
NmpTickLabelFontSize
NmpTickLabelFontAspect
NmpTiekLabeIFontThickness
NmpTickLabelTextAngle

NmpTickLabeiTextJust

NmpTickLabelStyle

NmpGrid

NmpGridDotSpaee

NmpGridSpace

Turns on the mapping option.

Selects the mapping projection.

Controls map tick mark attributes.

Turns on map tick mark labels.

Chooses between degrees, degrees-minutes, and degrees-minutes-

seconds display styles.

Sets whether or not to turn on grid Oat and Ion lines).

Sets the distance between points used to draw a grid.

Sets the grid spacing in degrees.

NmpUserLinesDotDist

NmpPlotterResltn Sets the width of the target plotter in plotter units.

NmpUserLinesDashPattern Sets the dash pattern for lines drawn by the MAPIT utility.

44 NCAR INTERACTIVE Functional Specification

Sets the distance between dots along a dotted line drawn by MAPIT.

Common composite resources

NmpUserLinesType Sets the type of line (dotted or dashed) drawn by MAPIT.

NmpPerimLineDashPattern

NmpPerimLineDashLength
NmpPerimLineColor

NmpPerimLineThickness

NmpGridLineDashPattern
NmpGridLineDashLength
NmpGridLineColor
NmpGridLineThickness

NmpLimbLineDashPattern
NmpLimbsLineDashLength
NmpLimbsLineColor
NmpLimbsLineThickness

NmpCOLineDashPattern
NmpCOLineDashLength
NmpCOLineThickness
NmpCOLineColor

NmpUSLineDashPattern
NmpUSLineDashLength
NmpUSLineThickness
NmpUSLineColor

NmpPOLineDashPattern
NmpPOLineDashLength
NmpPOLineDashThickness
NmpPOLineColor

NmpLimbLine

NmpOutlineType

NmpOutlines

NmpElliptical

NmpLabels
NmpLabelsFont
NmpLabelsFontSize
NmpLabelsFontColor
NmpLabelsFontThickness
NmpLabelsFontAspect

NmpMinVectorLength

Controls how perimeter line is drawn.

Controls how map grid line is drawn.

Controls how limb line is drawn.

Controls how continental outlines (CO) are drawn.

Controls how US outlines are drawn.

Controls how political outlines are drawn.

Sets whether or not lira lines should be drawn.

Sets the type of outlines to use (none, continental, state, etc.).

Sets whether or not outlines are dotted or dashed.

Sets whether or not a map is inscribed within an ellipse.

Sets whether or not to label the meridians, the poles, and the equator

Points closer than this value to a previous point are omitted

Sets whether or not to draw a perimeterNmpPerim

NmpSatDistance Sets how many Earth radii the satellite is from the Earth's center

NmpSatSight2Center

NmpSatU2Projection

Measures the angle between the line to the Earth's center and the line

of sight

Measures the angle from the positive U axis to the line OP, where 0

is the origin, and P is the projection of the desired line of sight

NCAR Interactive Functional Specification 45

Newprogramminginterfaceto NCARGraphics(HighLevelUtilities)

NmpProjectionOrigin The coordinates of the origin of projection (latitude, longitude)

NmpProjectionRotation Angle of rotation of a projection

NmpRectLimitType Sets howto interpret the rectangular limits of a map

NmpRectLimitl The rectangular limits of a map. These values depend on the
NmpRectLimit2 NmpRectLimitType.

NmpRectLimit3
NmpRectLimit4

NmpBoundMaskType Sets whether or not to mask areas in NmpBoundMask when drawing
boundaries

NmpBoundMask Array of area identifiers to mask or unmask

NmpBoundMaskSize Size of the NmpBoundMask array

NmpGridMaskType Sets whether or not to mask areas in NmpGridMask when drawing
NmpGridMask grid lines
NmpGridMaskSize

NmpLineMaskType Sets whether or not to mask areas in NmpLineMask when drawing
NmpLineMask lines with the MAPIT utility

NmpLineMaskSize

NmpAreaFillType Sets whether or not to mask areas in NmpAreaaFill when filling areas

NmpAreaFill Array of area identifiers to mask or unmask

NmpAreaFillSize Size of the NmpAreaFill array

NmpAreaFillColor Array of color table indices specifying the area fill color

NmpAreaFillPattern Array of fill flags which determines an area's fill pattern

NmpLatLabels Sets _hether latitude and longitude labels will be along a constang
NmpLonLabels grid line or at the perimeter of a plot

NrnpLatLabeiConstant Set the latitude and longitude for labeling a grid

NmpLonLabelConstan

NrnpLatLabelStyle Sets the format for latitude and longitude labels
NrnpLonLabelStyle

NmpLatLabelSpace Sets the spacing in degrees between labels
NmpLonLabelSpace

NmpLatLabelFont
NmpLatLabelFontSize
NmpLatLabelFontThickness
NmpLatLabelColor
NmpLatLabelFontAspect
NmpLonLabelFont
NmpLonLabelFontSize
NmpLonLabelFontThlckn ess

NmpLonLabelColor
NmpLonLabelFontAspect

Sets the text characteristics of the grid labels for latitude and

longitude

46 NCAR INTERACTIVE Functional Specification

X-Yplot

4.9 X-Y plot

An X-Y plot is a two-dimensional plot of zero or more curves.

The functionality is similar to that of the NCAR Graphics

Autograph utility. An X-Y plot can have any number of

curves. For each curve, a line style, color, pattern, etc. must be

specified or defaulted. These attributes are passed as arrays of

attributes. The size of the array arrays is determined by the

number of curves in the plot (NxyNumCurves).

4.9.1 X-Y plot general parameters

The following parameters represent the arrays of attributes for

individual plot curves.

NxyNumCurves Sets the number of curves.

NxyLineNPoints Sets the number of points for a single curve.

4.9.2 X-Y plot curve parameters arrays

The following parameters are arrays of size NxyNumCurves.

Each curve in a plot has one element from each array that

specifies a particular curve attribute. For example, if you were

plotting 3 curves, curve 1 would be defined by the attributes in

the first element of each of the following arrays, and curves 2

and 3 would be defined by the second and third elements.

NxyLineStyle Selects whether to use dashed, labeled or automatic line styles.

NxyLineIndex
NxyLineThickness
NxyLineColor

NxyLineSmooth
NxyLineDashPattern
NxyLineDashLength

NxyLineLabelText

NxyLineLabelFont
NxyLineLabelFontColor
NxyLineLabelFontSize

NxyLineLabelFontThickness
NxyLineLabelFontAspect

Sets the index of the current curve when using the indexed scheme for

setting line attributes.

Sets line label attributes for each curve.

NCAR Interactive Functional Specification 47

Newprogramminginterfaceto NCARGraphics(HighLevelUtilities)

4.9.3 X-Y plot control parameters

These parameters control the display of the plots, such as how

to interpret the data with implied coordinates, and how to

interpret missing values.

NxyScheme

NxyControlPlotType

NxyYLineN
NxyXLineN

NxyControlRow

NxyControlOrder

NxyControlInvert

NxyControlWindow

NxyControlMissingValue

NxyControlXMin

NxyControlXMax

NxyControlXSmallest

NxyControlXLargest

NxyControlYMin
NxyControlYMax
NxyControlYSmallest
NxyControlYLargest

Specifies whether to interpret attributes as arrays or single values.

Specifies the input format of the data arrays

Where N goes from 1 to NxyNumCurves. These are the X and Y data arrays.

Specifies the dimensioning of the X and Y arrays

Specifies the data ordering (C or Fortran) for 2D arrays

Allows user to graph x as a function ofy

Allows user to omit curve portions falling outside the grid window

Sets the missing values in the data

Specifies the minimum X user coordinate

Specifies the maximum X user coordinate

Values less than this value are not considered in the plot calculation if

NxyControlXmin is set to NxyControlMissingValue
1.

Analogous to NxyControtXSmallest

Analogous'to the corresponding X"parameters

4.10 Contour

The contouring HLU should implement the functionality of

Conpack without requiring the user to understand the details of

coordinating the Ezmap, Gridal, Areas, Plotchar, and Labelbar
utilities. This is a draft list of the resources needed to specify a

contour plot. The Contour HLU uses all of the common

composite resources. The following resources are specific to

creating, filling, and drawing contours.

48 NCAR INTERACTIVE Functional Specification

Contour

NcnDataType Sets whether input data array is short, long, float or double storage type.

NcnDataGridType The contouring utility will handle regular, regular sparse, irregularly
spaced and randomly spaced data.

NcnXDim Specifies wheter data array's first or second dimension maps to the X
dimension

NcnXDataDim Sets number of elements in X direction.

NcnYDataDim Sets number of elements in Y direction.

NcnXDataCord Array of coordinate values of grid points in X direction.

NcnYDataCord Array of coordinate values of grid points in Y direction

NcnXDataMin When grid is regularly spaced these substitute for NcnXDataCord.

NcnXDataMax

NcnYDataMin When grid is regularly spaced these substitute for NcnYDataCord.

NcnYDataMax

NcnIntervals Sets the contour intervals for each contour level.

NcnCIntervalFillPattern Sets the fill pattern to use for each contour level.

NcnCIntervalColor Sets the the color index to fill each contour level.

Sets the color index of each contour line.NcnCLineColor
NcnCLineDashPatern
NcnCLineThickness
NcnCLineSmooth

NcnCLineDashLength

NcnCLineLabeiStyle Sets contour line label style. Conpack supports 3 ways of labeling contour
lines.

Strings to label contour lines with.NcnCLineLabelText
NcnCLineLabelFont
NcnCLin eLabelFontSize
NcnCLineLabelFontThickness

NcnCLineLabelFontAspect
NcnCLineLabelFontColor

NcnNumCLines Number of contour lines.

NcnXStart Used "clip" X dimension and map a subset of current data into the

NcnXEnd viewport.

NcnYStart Used "clip" Y dimension and map a subset of current data into the view

NcnYEnd port.

NCAR Interactive Functional Specification 49

New programming interface to NCAR Graphics (High Level Utilities)

NcnInfoLabelText
NcnlnfoLabelFont
NcnInfoLabelFontColor
NcnInfoLabelFontSize
NcnInfoLabelFontThickness

NcnInfoLabelFontAspect
NcnInfoLabelTextJust
NcnInfoLabelTextPosX
NcnInfoLabelTextPosY

String for informational label.

NcnH|ghLow Turns on and of HighLow informational labels.

NcnHighText
NcnHighFont
NcnHighFontColor
NcnHighFontSize
NcnHighFontThickness
NcnHighFontAspect

NcnLowText
NcnLowFont
NcnLowFontColor
NcnLowFontSize
NcnLowFontThickness

NcnLowFontAspect

Strings for High informational label. All of the standard text setting

resources are implied.

Strings for Low informational labels.

NcnMissingValue Sets a values that represents missing data points in the data set.

Turns on High Low Box and sets width and height.NcnHLBox
NcnHLBoxWidth

NcnHLBoxHeight
NcnHLBoxLineThickness
NcnHLBoxLineColor
NcnHLBoxLineDashPattern

4.11 Vector

There two styles available for displaying vector fields: color

encoded and length encoded. The first draws all vectors an

equal length, but colors them based upon their magnitude. The

second style scales the length of the drawn vector to reflect its

magnitude relative to the maximum magnitude.

NvrStyle Selects between color coded vectors and length encoded vectors

NvrMaxLength Sets the length of the maximum magnitude vector in output frame
coordinates.

NvrIntervals The Intervals resource is an array of values used to determine what
NvrNumIntervals color a color encoded vector style should use.

NvrIntervalIndex
NvrIntervalColor

50 NCAR INTERACTIVE Functional Specification

Streamline

NvrLineThickness Sets thickness of vector line segments.

NvrColor Used to set the color of vectors when the length encoded vector style
is selected.

Writes the value of the magnitude of each vector at the tail of theNvrLabels
NvrLabelFont
NvrLabelFontSize
NvrLabelFontColor

NvrLabelFontAngle
NvrLabelFontAspect

NvrLowThreshold

NvrHighThreshold

NvrDataType

NvrU

NvrV

NvrXDim

NvrXDataDim

NvrYDataDim

NvrXDataCoord

NvrYDataCoord

NvrArrowSize

NvrUMissingValue

NvrVMisslngValue

vector.

Sets the minumum vector magnitude to be displayed

Set the maximum vector magnitude to be displayed

Specifies whether integer or floating point data is being used.

Two Dimensional data array for horizontal vector components

Two Dimensional data array for vertical vector components.

Specifies whether first or second dimension of data array maps to the
X direction.

Number of element in X dimension of data.

Specifies which dimension of the U/V array maps to the Y
dimension.

Array of coordinate values for X dimension.

Array of coordinate values for Y dimension

Sets the Size of the arrow drawn on the end of the vectors.

Sets the value of missing values for U direction.

Sets the values of missing values for V direction.

4.12 Streamline

Streamlines represent the path taken by particles dropped into

a flow field. The following are the resources for configuring a

streamline plot style.

NslU Two dimensional horizontal vector component.

NslV Two dimensional vertical vector component.

NsIColor Line attributes for streamlines.

NslLineThickness

NslDataType Specifies whether input data is integer or floating point.

NCAR Interactive Functional Specification 51

NewprogramminginterfacetoNCARGraphics(HighLevelUtilities)

NslUMissingValue Set the value of missing values for the U direction.

NslVMisslngValue Sets the values of missing values for the V direction.

NslXDataCoord Array of coordinate values for the X dimension.

NslYDataCoord Array of coordinate values for the Y dimension.

NslXDim Secifies whether first or second dimension of data array maps to the
X direction.

NslXDataDim Number of elements in X direction of data.

NsiYDataDim Number of elements in Y direction of data.

NslArrowSize Size of arrows drawn on streamline.

NslSpaeing Controls spacing between streamlines.

NslStartEligible Controls _hich grid boxes are canidates to start a streamline.

NslStepsPerGrldBox Controls number of sample points per grid box that a streamline
passes through.

4.13 Common 3-D resources

The following resources are common to both the Isosurface
and Surface utilities.

N3dEyePoint

N3dViewCenter

N3dConstLines

N3dSkirt

N3dContourHigh
N3dContourLow
N3dContourInterval

coordinate postion of the eye

Coordinates of position looked at

Sets the constant lines (U, U and v,U'and V and W, etc.) to be used

for drawing a surface

Turns off/on a wall or skirt along the edges of a surface where it

intersects the data boundary

Sets the high, low and interval for drawing contours on a surface

4.14 Surface

Surface plots are used to create a three-dimensional

perspective of two-dimensional data with hidden lines
removed. The surface, Z, is a function of the two variables X

and Y.

52 NCAR INTERACTIVE Functional Specification

Surface

For example, a three-dimensional surface could be created
from a two-dimensional array of data where the first array

dimension is the X position and the second dimension is the Y

position on a Cartesian grid. The value (Z) of each element in

the array defines the height of surface for each X and Y
coordinate.

The following parameters define the characteristics of the
surface such as rotation, surface representation, and viewing

angle.

NsrArrayDims Sets the X and Y data dimensions

NsrArray The data array

NsrArrayRange Specifies how much of the data set to use or subsample

NsrArrayXstride Sets the stride factor by which the utility will sample the data

NsrArrayYstride

NsrXcoord Arrays of X and Y coordinates, respectively

NsrYcoord

NsrEyepoint Position of the viewers eye

NsrViewCenter Position the viewer's eye looks at

NsrStereo Sets whether or not to draw stereo images

NsrStereoAngle Sets the relative angle between the eyes for stereo images

NsrStereo'13'pe Sets how stereo images are placed on frames

NsrPlotDirection Sets which plotting direction corresponds to the positive Z axis

NsrConstLines Sets which lines to use to draw a surface

NsrDrSide Sets which side of a surface to draw

NsrSkirt Specifies whether or not to draw a skirt around the object

NsrSkirtBottom Sets the level at which the bottom of a skirt terminates

NsrNLevels Sets the number of levels of constant Z

NsrStereoTheta Sets the angle in radians between eyes for stereo pairs

NsrContourHigh Sets the highest and lowest levels of constant Z and the increment
NsrContourLow between them

NsrContourIncrement

NsrSpvalFlag Controls the use of the special value (NsrSpval)

NsrSpval The real data value used to mark special or missing data

NCAR Interactive Functional Specification 53

Newprogramminginterfaceto NCARGraphics(HighLevelUtilities)

4.15 Isosurface

This section describes the resources that specify an isosurface
object. These objects are created by taking a 3D volume of

data and specifying a threshold value. A polygon surface is

created that intersects values in the data which equal the
threshold value.

These surfaces or objects can then be operated upon. For

example, a user can change the object's color, position, or
lighting characteristics.

: 2 :

Besides iso-surfaces, this section describes the resources for
3D surfaces generated from 2D data (the Z position is

determined by the data value) and volumentric objects (data

points are displayed as relative intensities where the intensity

is proportional to the data value).

The 3D functionality is divided into two utilities: NCAR

Graphics and PolyPaint.

The NCAR Graphics utility will be built on the NCAR

Graphics ISOSRF routine which generates isosurfaces from a

three-dimensional array.

The need to develop a programming interface to the PolyPaint
application has not been confirmed. The interface presented

here for PolyPaint is a possiblility of what the interface may
look like should it be determined that this is a high priority.

The PolyPaint utility will be built on MMM's PolyPaint

application which also generates isosurfaces, but it includes

support for color shading, volumentric rendering, and index

and true color. PolyPaint also allows the user to control

lighting, viewing, and shading.

54 NCAR INTERACTIVE Functional Specification

Isosurface

NisConstLines

NisVisibility

NisEyepoint

NisArrayDims

NisArrayRange

The resources for 3D surfaces are divided into three sections:

NCAR Graphics isosurface resources, common resources
between the NCAR Graphics Isosurface utility and PolyPaint,

and PolyPaint resources.

Specifies which type of iso-surface lines to draw (U,U and V,

U and \V, U and V and \V, etc.)

Sets what data is inside and outside a surface

Position of the eye in 3-space

The X, Y, and Z dimensions of the data

Specifies the subset of the data to use

NisArrayXstride Specifies how much, if any, data to thin from the data set

NisArrayYstride
NisArrayZstride

NisAxes Flag for turning on/off the coordinate axes

NisThreshold Value which defines the iso-surface

NisSurfaeeData An array of data from which an iso-surface is computed.

NisAliasExpon Sets the alias exponent (depends on the monitor used to display
antialiased wire-frames)

NisAmbient Sets the ambient light level intensity

NisXScale Stretching factors for each axis. This allows the user to stretch and

NisYScale shrink each dimension.

NisZScale

NisObjectBacldntensity Sets an object's intensity as seen through a transparent object

NisObjectFrontIntensity Sets an object's transparency intensity

NisPerpAxis Sets the axis which is perpendicular to the base plane

NisBasePlaneLevel Sets the level of the base plane

NisRedLimitMin
NisRedLimitMax
NisGreenLimitMin
NisGreenLimitMax
NisBIueLimitMin
NisBIueLimitMax

Sets the range of brightness associated with the red, green, and blue

raster-mapping arrays

NisViewCenter Sets the center of the object. The imaginary eye looks at this point.

NisPartitionNumber Sets the number of color partitions a color table should be divided
into

NCAR Interactive Functional Specification 55

Newprogramminginter/acetoNCARGraphics(HighLevelUtilities)

NisColorSet

NisCoordTrans

NisCrossSectColorHigh
NisCrossSectColorLow
NisCrossSectColorInterval

NisCrossPartition

NisVolCutPIane

NisXblHigher

NisCuttingPIane

NisAxisCutPlane

NisShadowDarkness

NisSpecularReflectionExponent

NisSpecularIntensity

NisThinSurfaceTransparency

NisTransTable

NisGeoTransformation

NisHazeColor

NisInnerTransExponent
NisOuterTransExponent

NisLightNumber

NisLightIntensity

NisLightlndex

NisLightPosition

Sets the current color partition or the surface color of the next object

if using true color.

Why not use NgmColorMap resource.'?.'??'?.????

Specifies the coordinate transformation

Resources for cross section coloring

Sets the color partition to use for index color

Sets the level whereby values greater than the level are displayed if

Nis\btHigher is on, and values less than the level otherwise.

Toggle flag used to determine what values of a surface to display

Sets the cutting plane level in a data volume

Sets the axis which is perpendicular to the cutting plane

Sets the darkness of a shadow which falls on an object

Sets the brightness of specular highlights

Sets the intensity of specular highlights if using indexed color or the

color if using true color

Sets the value of the exponent for thin surface transparency

Table for determining which objects are transparent to which other

objects

Sets the coordinate transformation to use for geographic data

Sets the haze color (true color) or the brightness (indexed color)

which an image fades to depending on distance from eye

Define the inner and out exponents used for transparency level in

nested shells.

Sets the number of lights in the scene

Sets the intensity for diffuse lighting of the current light source for
index color or the color of the current light source for true color.

Sets the current light source

Sets the coordinates of the current light

NisMagnification Sets the amount of object magnification

NisViewAngle Sets the viewing angle for enlarging and shrinking an object

NisColorMidPoint Sets the midpoint value for the current color partition. This is used
for gamma correction.

NisObjectIndex Sets the current object

56 NCAR INTERACTIVE Functional Specification

Isosurface

NisPartitionIndex Sets the current color partition

NisTransOverlapColor

NisRampNumber

NisRampColor

NisRampId

NisRotationAngle

Sets the color map to use for index color when pixels are overlapped

by a transparent object.

Sets the number of color ramps for true color

Defines a color ramp for true color applications

Sets the current data color-coding ramp

Sets the object rotation

Sets the Z position of a shodow cast onto a planeNisShadowPosition

NisShellLimitLow Define the surface and intervals of shells

NisShellLimitHigh
NisShellLimitInterval

NisVerticeLimit Sets the maximum number of vertices a polygon can have

NisObjectActive Toggle parameter which determines if an object is active and will be
rendered

NisDataAlternate Determines whether to use color or main data for cutting plane

NisPixelAlternate Sets how to handle transparency (alternating pixe]s)

NisAntiAlias Toggle for turning antialiasing on and off

NisArrayScale Toggles between scaling and not scaling the cutting-plane coloring
by the values in the cutting-plane array

NisAutoHaze Toggles the auto haze calculation

NisAutoCenter Determines how to set the center of view

NisAutoScale Determines bow the view angle is set

NisSurfaceNormals Toggles between smooth and faceted surface

NisBackfaceCull Toggles backface culling

NisScaleBySlice Selects option to scale cross-section coloring by values in an array
slice

Sets whether or not to create and use color-coding data when creating

NisColorCoding polygons

NisSurfaceColorData An array of data which is mapped onto an iso-surface.

NisShellTransparency Sets whether or not to make transparent shells different colors

NisLightT)'pe Sets the current light's type (directional/point)

NisEyeRotation Toggles ability to rotate the eye position

NisLightRotation Toggles ability to rotate the light position

NisShellLow Determines wheter low or high values are to be on inside of a surface

NCAR Interactive Functional Specification 57

Newprogramminginterface to NCAR Graphics (High Level Utilities)

NisShading

NisSmallOpaque

NisShadowProjection

NisCuttingPlaneColor

NisSidewallPlanks

NisRasterScale

NisRasterMap

NisSeltTransparency

NisWireShades

NisSurfaceFaceUp

NisLightTerminator

NisThinSurface

NisTrueColor

NisVolhigher

NisVolAIgorithm

NisSkirt

NisWireFrame

NisBoundingBox

NisZoomFactor

NislmageType

Nis2DAxis

Nis2DContourLow

Nis2DContourHigh
Nis2DContourInterval

Nis2DWidth

Nis2DLevel

Nis2DPlotLevel

Nis2DSurfaceScale

Sets the shading algorithm (phong/gouraud)

Allows user to make smallest shell in nested 's'laells opaque

Sets how an object's shadow is projected

Toggles between coloring and not coloring the interactive cutting

plane

Sets how the side walls are calculated

Sets how to scale the red, green, and blue raster arrays for true color

Sets whether or not to superimpose raster data onto the surface of an

object (true color)

Sets whether an object should be transparent to itself (index color)

Sets whether or not to shade wire frames according to current

lighting model

Determines whether or not surfaes face up or down surrounding

higher and lower values

Sets the angle for light termination

Toggle for using thin surface transparency

Sets whether to use index or true color

Sets whether to display higher or lower values than NisVolCutPlane

Selects the volumetric algorithm (quick/slow)

Sets whether or not to build walls or endcaps

Selects between wire frame or surface rendering

Sets whether or not to display a bounding box around the data

Sets how much to zoom in or out on an object

Sets how to render an image

Sets the axis perpendicular to the plane in which 2D contours or

surfaces are generated

Set limits for 2D contours

Sets the width of 2D contours

Sets the level in a data volume at which 2D contours or surfaces are

generated

Sets the level at which a 2D surface will be plotted.

Sets the amount which data values are scaled in a 2D surface plot

58 NCAR INTERACTIVE Functional Specification

Histogram

4.16 Histogram

@ @ @To be added.

4.17 Annotation

The Annotation utility should allow the user to add text, lines,

and shapes to any CGM frame. Users should be able to

develop custom lines and fill patterns. The annotation utility
will also be able to draw label bars and legends to meet
customized demands.

NCAR Interactive Functional Specification 59

Newprogramminginterfaceto NCARGraphics(HighLevelUtilities)

60 NCAR INTERACTIVE Functional Specification

IntroductiontoNCL

SECTION 5 NCAR Command Language

Specification

5.1 Introduction to NCL

The NCAR Command Language (NCL) will support the needs

of users who want to conduct interactive data exploration and

analysis. NCL uses the following model for interactive data

analysis: data are selected and read from a file, data are

processed, a visualization specification is made, then the

visualization is rendered. To provide true interaction, NCL

must allow the user to return to any of the previous steps in

this model at any time.

Easy and intuitive access to datasets is a fundamental

prerequisite for interactive data exploration, analysis, and

visualization. Since datasets often come in a variety of data

formats, grid sizes, grid resolution, and units, very different

datasets often need to be combined, compared, and used at the

same time. Currently, specialized applications must be

developed to read individual datasets and transform them into

a form that is compatible with other datasets being used, as

well as with the graphics package being used.

NCL allows different datasets to be imported into one uniform

and consistent data manipulation environment. The primary

data format used by NCL is the netCDF data format. This

network-and-architecture-transparent format has the ability to

store multiple data types of multiple dimensions. Furthermore,

the netCDF file contains information describing its content.

For example, a given variable can have information about the

units it is stored in, missing values, valid data ranges, etc. This

general information facilitates the development of a powerful

generalized data manipulation environment like NCL. For

NCAR Interactive Functional Specification

PAG_ EK.ANK I'tOT FILMED

61

NCARCommandLanguageSpecification

more information on netCDF, consult the netCDF User's

Guide. For a good understanding of NCL, you should be

familiar with netCDF and basic programming language

concepts.

Easy and intuitive output specification is also a prerequisite for

interactive data analysis and exploration. NCL has built-in

defaults for quick and accurate visualization of data. The
defaults can also be customized by the user in the form of a

user defaults file. Furthermore, visualization specifications can
be entered and altered at the command line.

This section of the NCAR Interactive functional specification

is organized into four sections. The first section presents the

NCL syntax and describes the semantics of the language. The
second section describes the visualization specification

process. The third section outlines the set of built-in data

manipulation functions provided with NCL. The fourth section

describes the requirements for user extension of the NCL
function set.

5.2 Language overview

NCL can be thought of as a complete programming language.

It has types, variables, operators, expressions, conditional

statements, and loops. NCL also has features that are not found

in common programming languages. These additional features

handle manipulation of metadata and the configuration of the

output graphics. NCL can operate in three modes. The first

mode of operation is as an interactive command line

interpreter where every statement is executed immediately
after the user enters a command or expression. The second

mode of operation is as a batch command interpreter where an
entire NCL script is read in at one time and executed. The third

mode is intended to facilitate the batch production of large

quantities of output visualizations either for data exploration or

video production. NCL is not meant to be a replacement for

62 NCAR INTERACTIVE Functional Specification

Languageoverview

5.2.1

programming in other structured languages, but it is meant to

provide an integrated environment where data can be selected,

manipulated and visualized interactively without requiring

compilation.

NCL data model

As explained earlier, one dominant problem in handling
scientific data is handling the data's metadata, the information
that describes the data. Some common metadata items are

units, dimensionality, variable names, valid ranges, data
minimums and maximums, missing values, coordinate indices,

and brief textual descriptions. Much of this information is

extremely useful for creating informative visualizations of the

data. The goal of NCL's data handling capability is to manage
the metadata in a convenient and straightforward fashion. The
data model used in the netCDF datafile format is an ideal

candidate for NCL's internal data representation. NetCDF

provides a common interface for storing multi-dimensional
data and its associated metadata.

The primary model of data in NCL is the netCDF data file
model. This does not mean that the only format supported by

NCL is netCDF, but simply that the abstraction NCL uses to

represent data is the same. Most other data formats can be

mapped into the netCDF model and therefore used in NCL.
NCL data is divided into files that each contain named

variables, named dimensions, and attributes. The attributes are
file attributes that describe the file; they can provide a title, a

file history, etc. The variables are multidimensional arrays with
each dimension named. Each variable can have attributes as

well. These are attributes like the valid range of the variable,

the units, the long name of the variable and other descriptive
information. A data file can have as many variables and
attributes as the user desires.

Another property of the NCL data model is the concept of the
coordinate variable. A coordinate variable, by definition, has

NCAR Interactive Functional Specification 63

NCARCommandLanguageSpecificatTon

5.2.2

the same name as its dimension. It holds the coordinates for

that dimension. For example, a coordinate variable for the

dimension lat would hold the coordinates in degrees latitude of

each integer index. All of these features make up the NCL data

model. Special syntactic constructs have been included in
NCL to handle some of these features.

file1 @title = '`Temperature" creates file attribute title and assigns
it the string "Temperature"

file1 .a = varl assigns varl to file1 and renames it
a.

file1 .a @ units = "Degrees C" creates variable attribute units and
assigns it the string "Degrees C".

file1 !0 = "lat" renames the first dimension of filelto
"lat".

file1 &lat = [90,45,0,-45,-90] creates the coordinate variable for
the dimension called lat if file1.

NCL data types

In NCL, there is only one abstract data type, thefile record.

The file record is similar to the record type in pascal, the
structure in C, and the common block in FORTRAN. The NCL

file record holds variables, dimension names, variable and file

attributes, missing value values, etc. A file record can hold any

number of these items with any number of primitive data

types. The NCL record is called a file record because

everything held by a file record can be written into one netCDF

file. When ascii or binary files are created from file records, a

separate descriptor file is created in which all of the metadata
for the variables in the file record are stored. The descriptor file

also describes the organization of the data in the binary or ascii
file. Similar procedures are used to map the file record to other

storage formats. The NCL file record allows the user to group
variables and other related information logically and

conveniently.

64 NCAR INTERACTIVE Functional Specification

Language overview ._

The other items like the attributes, the coordinate variables,

and dimensions should be thought of as fields of a record and

not types of their own. These are all elements of the data

model NCL will use. Variables are all array type variables,

with scalars being arrays of one dimension of size one.
Variables, attributes, and coordinate variables can be one of the

following primary data types: float, double, short, long,
charactel, or byte scalar value or multi-dimensional array.

Dimension names are of type character. File types have no

primary type because they are just a symbolic representation of
the file. The only operations that can be performed on a file

type are assigmnent, passing file record variables as

parameters to functions, and adding and deleting variables,
attributes and dimensions from file records.

Variables can exist without being associated with a file record.

These variables are called variables in memory. They can be

assigned to a file, as the examples in the previous section show.

5.2.3 Variables and data selection

NCL variables are, in many ways, just like variables in other

programming languages; they are symbolic representations of

either scalar values or arrays. In NCL, variables must begin

with a letter and can have any combination of characters and

numbers making up the rest of the name. The following is an

example of an instantiation of an NCL variable. The prompt

"ncl>" represents the command line prompt provided by the

NCL interpreter.

ncl> var_l = 5

As expected, the scalar integer 5 is assigned to the variable

"var_l" in memory. To instantiate a variable and associate it

with a file record, the filename is prepended to the variable

name. For example:

ncl> filel.var_l = 5

NCAR Interactive Functional Specification 65

NCAR Command Language Specification

Now the value 5 is assigned to the variable "var_l" in the file

"filel". To add another variable to the file record "filel", the

new variable name is appended to the file record name. For

example:

ncl> filel.var_2 = 5.0

Now the scalar float value 5.0 is assigned to the variable

"var_2" in the file "file 1". An array of values can also be

assigned to a variable. For example, the following three

examples create a one, two, and three-dimensional array

respectively:

ncl> a = [1, 2, 3]

ncl> b = [1,2, 3; 4, 5, 6]

ncl> c = [[1,2, 3; 4, 5, 6] ;[7, 8, 9; 10, 11, 12]]

Array "a" is a one-dimensional array of integers of size three in

memory. Array "b" is a 2x3 two-dimensional array of integers

in memory, and array "c" is a 2x2x3 three-dimensional array of

integers in memory. In the above examples, each group of

consecutive numbers separated by commas is an individual

row of the array. Rows are separated by semicolons. Therefore

array b is a 2x3 array because there are two rows with three
elements each.

5.2.3.1 Standard array indexing

NCL provides three basic types of array indexing, the first of

which is discussed here and referred to as standard array

indexing. The array indexing presented here is in many ways

similar to how standard programming languages implement

array indexing. The other types are specific to NCL and

provide the user different ways to work with and select their

data. The reasons for having three different types of array

indexing is to provide alternatives to the user that offer an

easier and more intuitive way to select data. NCL arrays are

ordered using "row by column" ordering. NCL's standard array

indexing is similar to FX/8 FORTRAN. This means that both

individual elements and ranges can be indexed. Array indexes

66 NCAR INTERACTIVE Functional Specification

Languageove_iew

begin at zero and end at n- 1 where n is the size of the array.

The following are examples of NCL's array indexing.

Example 1)

ncl> print(a)

(0) 1

(1) 2

(2) 3

Example 2)

ncl> print(b)

(o,o)1
(0,1) 2

(0,2) 3

(1,0) 4

(1,1)5

(1,2) 6

Example 3)

ncl> print(c)

(0,0,0) 1

(0,0,1) 2

(0,0,2) 3

(0,1,0) 4

(0,1,1) 5

(0,1,2) 6

(1,0,0) 7

(1,0,1)8

(1,0,2) 9

(1,1,0) 10

(1,1,1) 11

(1,1,2) 12

Examples 1, 2, and 3 show references to the entire arrays.

When a variable is referenced by name without any indices,

the entire array is referenced. The print command can be

thought of as a procedure in NCL and the variables are passed

to the procedure as parameters. Additional information about
procedures appears later in this document. Also shown here

are the indices of each of the elements in the array. This should

be helpful for understanding the rest of the examples.

Example 4)

ncl> print(a[1])

(0) 2

NCAR Interactive Functional Specification 67

NCAR Command Language Specification

Example 5)
ncl> print(b[O][2])
(o)3

Example 6)
ncl> print(c[1][1][1])
(0) 11

Examples 4 through 6 show how individual elements of each
of the example arrays can be indexed. Since variable "a" is

one-dimensional, only one index is needed. Similarly for the

three-dimensional array "c", three indices are needed to select

one element from the array.

Example 7)
ncl> print(b[1])
(0) 4
(1) 5
(2) 6

Example 7 demonstrates how arrays are indexed when the

number of subscripts is less than the number of dimensions.
NCL uses the rule that when there is no index for a particular

dimension, the entire dimension is selected. As shown,

example 7 indexes the entire second row of "b".

Example 8)
ncl> print(a[0:1])
(0) 1
(1) 2

Example 9)
ncl> print(a[1 :*])
(0) 2
(1) 3

Example 1O)
ncl> print(a[*:1])
(o) 1
(1) 2

Examples 8 through I0 demonstrate various ways in which

ranges of dimensions can be specified. Example 8 shows how

a start and end index is specified. In examples 9 and 10, the "*"

means to select everything from either the start index to the

68 NCAR INTERACTIVE Functional Specification

Languageoverview

end as in example 9, or to select everything from the beginning

to the end index as in example 10.

Example 11)
ncl> print(c[O][*][0:l])
(o,o)1
(0,1) 2
(1,0) 4
(1,1)5

Example I 1 shows all three indexing methods. In the first

dimension, only the first row is selected. In the second

dimension, everything is selected and in the third dimension,

the first two elements are selected. Since there are only two

dimensions with more than one element selected, the resulting

array is a two-dimensional array.

5.2.3.2 NCL specific array indexing

Additional details about the NCL data model are needed

before discussing NCL-specific array indexing. As mentioned

earlier, the NCL data model is a virtual representation of the

netCDF model of scientific data. One important netCDF

concept is the concept of the coordinate variable and the ability

to name variable dimensions (see the NetCDF User's Guide).

NetCDF provides a mechanism for naming dimensions.

For example, if a data file contains one independent variable,

such as temperature, and if temperature is defined over latitude

longitude, altitude, and time, netCDF allows the user to name

each of these dimensions. Therefore, one possible naming
scheme is to call the dimensions, "lat," "Ion," "level," and

"time." It is most likely apparent to the owner of this data that

latitude and longitude are coordinates in degrees, level is in

millibars, and time is in hours. These are coordinates, and for

someone familiar with their data, using these coordinates

could provide a more convenient way to index their data than

the previously described integer indexing scheme.

NCAR Interactive Functional Specification 69

NCAR Command Language Specification

The netCDF file defines a coordinate variable to be a variable

that has the same name as a dimension. This variable holds the

coordinates of each element in the data array. The following

example NCL script is provided for clarification. (This

example shows some functions that have not yet been

discussed in this document).

ncl> addfile ("T.cdf","N ETCD F")

ncl> inquire

FILE VARIABLE DIMENSION DIM NAMES

T.cdf temp 8xl 0x33x36 [frtime]x[level]x[lat]x[Ion]

T.cdf lat 33 [lat]

T.cdf Ion 36 [Ion]

T.cdf level 10 [level]

T.cdf frtime 8 [frtime]

ncl> print(T&level)

FileRead reading 40 bytes. Please wait...read successful

(o) lOOO.OOOOOO
(1) 850.000000

(2) 7oo.oooooo
(3) 500.000000

(4) 400.0o000o
(5) 300.000000
(6) 250.000000

(7) 200.000000

(8) 150.000000

(9) lOO.OOOOOO
ncl> a = T.temp[*][3]

This example loads the netCDF file "T" into NCL. Then the

inquire procedure prints out the currently defined variables.

This file contains five variables, four of which are coordinate

variables by definition. The print procedure prints out the

values of the "level" coordinate variable. The resulting printout

shows how the integer indexes map to the coordinate values.

Now for the sake of example, suppose that the user wants to

select the temperature at every latitude, longitude, and forecast

time, but only wants to look at values that correspond to the

500mb pressure level. With only standard integer indexing

available, the user would have to figure out which integer

index corresponds to the correct pressure level. Certainly

70 NCAR INTERACTIVE Functional Specification

Language overview

printing out the coordinate variable level provides this
information, but this is an extra unneeded step.

The solution to this problem is the second type of NCL array

indexing, called coordinate indexing. The following is an

example of this type of indexing:

ncl> a = T._emp[*]{ 500 }

Essentially this performs the same selection as shown in the

previous example. The only difference is that "curly" style
brackets (braces) are used in place of the square brackets. The

use of the braces instructs NCL to choose the integer index

based on the coordinate value entered.

In this example, NCL finds the integer index, 3, for the
coordinate value 500 in the "level" coordinate variable. There

is a simple rule for choosing the index when the coordinate

given is not an exact coordinate value. NCL finds the
coordinate value above and below the given value and chooses

the closest one. This is only the case when one coordinate

value is given. If a coordinate value range is specified, then all

coordinate values within the range are selected. As with

integer indexing, a range of values can be specified:

ncl> a = T.temp[*]{ 700 : 200 }
ncl> b = T.temp[*][2 : 7]

The above examples are equivalent selections. Providing the
coordinates values allows a more intuitive understanding of

the part of the data being selected. The second example uses

the integer indices to perform the selection. This method really

doesn't convey any useful information about the selection

operation on the data.

This second type of indexing scheme allows users to take
advantage of the coordinate variable feature of the netCDF

model to select data by the coordinate it is defined in, rather

than the integer coordinates the array is defined in. This
indexing scheme is called NCL coordinate variable indexing.

NCAR Interactive Functional Specification 71

NCARCommandLanguageSpecification

The third and final indexing type is a variation on the

previously mentioned indexing schemes. In both the previous

schemes, the variable subscripts had to be listed in the order in

which they are defined in the netCDF file. This final scheme

allows the subscripts to be listed in any order. In some cases

this may be the most intuitive way to select data from a NCL

file record or memory variable. The following is the same

selection as the previous example using the third type of

indexing, which is called named indexing.

ncl> a = T.temp{ level 1700 : 200 }
ncl> b = T.temp[level I 2 : 7]

Named indexing allows the user to use the dimension name to

specify the dimension that the subscript indexes. The rule for

braces is the same as the preceding indexing schemes. The
difference is that in each subscript, the name of the dimension

is listed followed by the pipe symbol (1). All dimensions that

are not subscripted are selected over their entire ranges by
default.

5.2.3.3 Accessing and AssigningMetadata Values

Several language constructs have been introduced in the NCL

language to handle the management of metadata like
dimension names, coordinate variables and variable attributes.

The operator '!' is used to select dimensions. There are two

possible uses of this operator. First, '!' can be used to retrieve
dimension names for variables or files. The following are

examples of this use.

Example 1)

ncl> print(file1 .var!O)
(0)"lat"

ncl> print(file1 .vad 1)
(O)"lon"
ncl> print(file1 .var!2)
Error: file1 .var only has two dimensions!

Example 2)

72 NCAR INTERACTIVE Functional Specification

Languageoverview

ncl> file1 .var!O = "latitude"

Example 3)

ncl> print(file1 .var!O)
(O)"lattitude"

Example 4)

ncl> print([file1 !0, file1 !1 , file1 !2)
(0) 'lime"
(1) "Ion"
(2) "latitude"
ncl> print([file1 .var!O, file1 .var!l])
(0) "latitude"
(1) "ion"

Example 1 above prints out the dimensions of the variable rat

in the filefilel. Example 2 renames the first dimension of

variable vat" to latitude. Example 3 shows the changed

dimension name. Finally, example 3 shows how the file

dimension name has been updated to reflect the name change.

When the '!' operator is followed by an integer value, the

integer represents the number of the dimension to access. Note
the difference between the first dimension of the variable vat

and the first dimension of the filefile]. Variables that are
members of a file record use dimensions defined in the file, but

they do not necessarily use the dimensions in the same order as

they are defined in the file. In this example variable var is a
two dimensional array of lat by lon in row/column order. The

ordering of the dimensions in the variable var reflect the

ordering of the data. The ordering of the dimensions in the file

file] simply represent the order in which the dimensions were

defined. In any event, changing the name of a dimension
either at the file level or the variable level causes the

dimension names of all variables using that dimension to be

changed.

Dimension sizes can not be changed ever. Dimension sizes can

be defined using the built-in function varereate, which creates

a new variable with dimension and size information as input.

Dimension size information can be listed using the built-in

NCAR Interactive Functional Specification 73

NCAR Command Language Specification

function dimsize, which returns the size given the file or

variable name and the dimension name.

The second use of the '!' operator is to place the dimension

name after the operator. Example 2 would appear as follows:

ncl> file 1.var!lat = "latitude"

This redefines the dinaension name Iat to latitude just as

example two did.

Another construct added to the NCL is the '&' operator which
allows users to associate a coordinate variable with a

dimension. The following example associates an array of
coordinate values with the dimension named latitude.

ncl> filel.var&lattitude = [-90.0, -80.0, -70.0... 90.0]

The operator '&' must be followed by a valid dimension name

for the file or variable appearing before it. Furthermore the

dimension size of the coordinate array must be the same as the

valid dimension. If these two conditions are met the array

becomes the coordinate array for every variable in the file

containing the dimension. The following ncl statement

accomplishes the exact same operation as the above statement

since dimensions and coordinate variables are global to the file
record.

ncl> filel&lattitude = [-90.0, -80.0, -70.0... 90.0]

The final construct introduced in ncl for accessing metadata is

the '@' operator. It is used to assign attributes to variables and

file. Its syntax is very similar to the '!' and '&' operators.

ncl> file1 @title = 'q'his is the main title attribute"

The above assigns the string "This is the main title attribute" to

the file attribute title. If the attribute title was not previously

defined, it is added to the files attribute list. If the attribute was

defined the old title is over written with the new one. What

ever the string following ' @' is, is the name of the attribute. If

74 NCAR INTERACTIVE Functional Specification

Language overview

a variable instead of a file precedes the ' @' then the attribute is

a variabIe attribute. For exampIe:

ncl> file1 .var@units = "Degrees C"
ncl> print(file.var@ units)
(0) Degrees C

The above example creates the attribute units and assigns the

string "Degrees C." The print command shows how to access
attributes.

5.2.4 NCL expressions and operators

NCL expressions are quite similar to expressions in traditional

programming languages. By definition, an expression is

anything that returns a value and a type. References to

variables and constants are expressions. Subscripts are also

expressions, as are functions and parameters to functions.

The following are all examples of expressions:

a[0]
2.0
a*2.0
"Hello World"
a!0
a&lat

There are 20 operators in the NCL language. Table 1 lists all

20 operators. These operators are separated into hierarchical

precedence groups. The operators at the top of the list are the

highest precedence, and the operators at the bottom are the

lowest precedence. When operators are members of the same

precedence group, a left-to-right rule is used to evaluate the

expression. For example, A*B/C would evaluate A*B first and

then divide the result by C. A-B/C would evaluate B/C first

(because division is in a higher precedence group than
subtraction), then subtract the result from A. This is consistent

with standard programming languages. To force a particular
order of execution left and right parentheses are used. (A-B)/C,

as expected, would compute A-B and divide the result by C.

NCAR Interactive Functional Specification 75

NCAR Command Language Specification

TABLE 8 NCL Operators

Symbol

+

NOT

A

/

#

%

--I-

<

>

LE

LT

GT

GE

Operation

Unary Negative

Unary Positive (Absolute Value)

Logical Not

Exponentiation

Multiplication

Division

Matrix Multiplication

Modulo

Addition

Subtraction

Less Than Selection

Greater Than Selection

Less Than or Equal To

Less Than

Greater Than

Greater Than or Equal To

Class

Unary

Unary

Unary

Algebraic

Algebraic

Algebraic

Algebraic

Algebraic

Algebraic

Algebraic

Algebraic

Algebraic

Relational

Relational

Relational

Relational

NE

EQ

AND

OR

11

Not Equal To

Equal To

Logical And

Logical Or

Relational

Relational

Relational

Relational

The operators can be divided into three classes: Unary,

Relational and Algebraic. Unary operators require only one

operand and produce either a variable data type or a Boolean

data type as a result. Boolean types were not included in the

data type section because there is no netCDF representation of

a Boolean variable type. However, an expression can yield a

Boolean type in an expression where Relational operators

compare two operands. The Algebraic operator type takes two

operands and produces a result type that can be assigned to an

76 NCAR INTERACTIVE Functional Specification

Language ovewiew

TABLE 9

NCL variable. Table 2 outlines result types for each operator

based on operand data types.

NCL Operator result types

Symbol

/

%

#

+

<

>

LE

LT

GE

GT

EQ

NE

NOT

+

OR

AND

Left Operand
Type

Numeric Type

Character

File

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Integer Only

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

n/a

n/a

n/a

Boolean

Boolean

Right Operand
Type

Numeric Type

Character

File

Numeric Type

Numeric Type

Numeric Type

Integer

Integer Only

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Result Type

TL/a

Numeric Type

Numeric Type

Numeric Type

Integer

Integer

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Numeric Type

Boolean

Numeric Type Boolean

Numeric Type Boolean

Numeric Type Boolean

BooleanNumeric Type

Numeric Type

Boolean

Numeric Type

Numeric Type

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

Note that no operators operate on file types other than the

assignment operator. When operand types are not identical,

NCL attempts to implicitly coerce the operands to be matching

NCAR Interactive Functional Specification 77

m

NCAR Command Language Specification

TABLE 10

types. Table 3 shows the types can be coerced and what types

they can be coerced to.

NCL Coercion Table

Type

Short

Coercible To

Long

Float

Double

Long Float

Double

Float Double

Any combinations not appearing in this table will result in

error messages. There is one exception to the coercion rule.

When the right operand of the division operator is an integer,

the operand is not coerced because integer division is used.

In NCL, operands can be multidimensional; if a and b are

arrays of equal dimensions and dimension sizes, then a * b

multiples every element in a by the corresponding element in

b. Similarly, if a is an array and b is a scalar, then a * b

multiplies every element in a by the value of b. Operands of an

algebraic and relational operator must have identical

dimensions, or one of the operands must have one dimension

of size one. Relational operators work in the same fashion. The

conditional expression a LE b is only true when every element

in a is less than its corresponding value in b. The only

exception to this rule is for the # operator, which requires two

dimensional arrays where a's dimension sizes are m by n and

b's are n by m.

NCL uses "lazy" evaluation to evaluate relational expression.

This means that as soon as enough terms in a Boolean

expression have been evaluated to evaluate the complete

expression, the expression is evaluated. Consider the following

expression:

78 NCAR INTERACTIVE Functional Specification

Language overview

(a LE b) and (c GTd) or (m NE O)

If and only if the first term, a LE b, evaluates to true does the

second term, c GT d, get evaluated. Similarly, if and only if the

first two terms evaluate to false does the third term get

evaluated. This is what is meant by "lazy" evaluation.

5.2.4.1 Expressions Containing Missing Values

There is one attribute that NCL absolutely depends on. The
name of this attribute is " FillValue." This attribute is a

number of the same data type as its variable that fills data

points where the values at that point are missing. NCL uses

this attribute to exclude any data points containing this value

from expressions. Excluding missing values from being used

in expressions is very computationally expensive but also

important. Special effort will be made in the design to focus on

this problem. When missing values occur in expressions the

result of the expression will have a default missing value set at

every point where a missing value occurred in the variables

used to compute the expression. Most likely there will be a

commandline option for turning this feature on and off. When

turned off the most efficient expression evaluation will be

used. Deleting the "_FillValue" attribute has the same effect.

This must be done if attempting to fill in missing values

otherwise the missing values are excluded from the expression

that's trying to fill them.

5.2.4.2 Expressions and Metadata

The handling of metadata in expressions presents some

problems. Consider the following example where file records

east and north contain vector variables U and V respectively.

The variable c ends up being the total wind speed at every

point in the variables U and V.

c = sqrt(east.U^2 + north.V^2)

NCAR Interactive Functional Specification 79

NCARCommandLanguageSpecification

If east. U has an attribute called longname which is set to

"eastward wind component" and north. V has also has an

attribute called Iongname which is set to "northward wind

component." Obviously neither of these attributes is applicable

to the new variable c. Similarly the attributes valid_range,
valid_rain, valid_max and scale_factor are not valid for the

variable c. There is also no guarantee or check, when
computing an expression, that the coordinate variables and the
dimension names are the same between all variable in an

expression. The only constraint placed on variable in an
expression is that the dimension sizes be the same.

The solution to his problem is when two or more variables are

used in an expression the coordinate values and dimension

names from the first variable in the expression are used and

attribute are not propagated in to the result. If there is only one

variable in an expression then just the coordinate variable and

dimension name information is propagated. In either case all

attribute information is not propagated except the "_FillValue"

attribute which is a special reserved attribute. If the variables
making up the expression contain more than one "_FillValue"

value then the default "_FillValue" value for the result type is

used to fill in the missing values in the result. This is not an

ideal solution but is the only one that can be applied

universally to all expressions and variables.

If the user wish to use the coordinate variable and dimension

names from a variable, other than the first one in the

expression, they must use another operator that would allow

them to choose from which variable in an expression to copy
dimension name and coordinate variable information into the

result. Attributes would still not be copied because more often

than not attributes change in expressions. An example of an
operator to do this kind of selection follows.

ncl> a = file1 .var - file2.var'

ncl> print(a!O)

(0) "lat"

ncl> print(file2.vadO)

80 NCAR INTERACTIVE Functional Specification

Language overview

(0) "lat"
ncl> print(file1 .vafiO)
(0) "latitude"

5.2.5 Functions and procedures

In NCL, the difference between functions and procedures is

that functions return a value and procedures don't. Functions

are expressions and can therefore be used in an expression.

The syntax of function and procedure calls is the same

throughout. The name of the function or procedure is followed

by a parameter list. A parameter list has individual arguments

separated by commas and enclosed in parentheses.

function(paraml ,param2,param2)

Parameters in NCL are passed by reference only. This means

that a function and procedure can change the value and have

that change reflected in the variable after the function or

procedure has ended. Below are examples of calling functions

and procedures.

ncl> writefile("/u 1/ethan/mydata.cdf",file 1)
ncl> a = sin(file1 .a)

The first example is a procedure that writes the file recordfilel.
The second is a function that returns the sin of the variable

file l.a.

The syntax for defining NCL functions and procedures

requires the keywords function or procedure, followed by the

name of the function or procedure, which is followed by a

parameter declarations list. The body of the function or

procedure needs to be enclosed by a begin and an end. The

following are examples of function and procedure definitions.

function sqrt(x) begin
sqrt = x ^ .5

end

procedure sqrt(x,y) begin

NCAR Interactive Functional Specification 81

NCARCommandLanguageSpecification

y=xA.5
end

The first example defines a function called sqrt. For functions,

the function name is used to assign the retum value. The

second example shows how a procedure can be used to

accomplish the same task. In both examples, a very simplified

parameter declarations list is used. The format of the

parameter declaration list can be very complex. In the two

examples, the most general format was used.

When the parameter list only contains the names of the

parameters, any type and size of variable can be passed. This is

helpful when designing generic functions that operate on

arbitrarily sized arrays of any type. However, the previous

examples would have problems with character, byte, or file

type data. When defining parameters, information about the

parameters' type and dimensionality can optionally be

included in the parameters declaration list. The following

example shows some of the ways to specify this information.

function min(x : numeric)

function min(x : double)

function min(x[*]:double)

function min(x[10][10]:double)

The first example, uses the keyword numeric to specify the

parameter to be of any numeric type. In the second example,

the parameter x can still have any dimension but it must be a

double or coercible to a double. As table 3 showed, any

numeric type is coercible to a double, so this effectively forces

the function min to operate on numeric types only. The third

example further constrains the input parameter by forcing it to
be a one-dimensional variable.

To the right of the parameter name, a list of subscript-like

items can be appended to the parameter name. These items

express the desired dimensionality of the parameter. When an

82 NCAR INTERACTIVE Functional Specification

Languageoverview

asterisk appears between square brackets, the dimension can

be any size. When a number is provided, the parameter is
constrained to have a given size, as in the fourth example

where the parameter x must be a two-dimensional variable
with dimensions of size 10.

When this information is provided in the definition of a

function, NCL verifies that any parameters passed to the

function are of the appropriate type, dimensionality, and size.

Therefore, if a user-defined function requires arrays of strings

of a certain size, NCL can check the parameters passed to the

function. When none of this information is provided, no

checking is done.

There are two types of functions and procedures: those that are
written in NCL, and those that are written in C or FORTRAN.

From the user's point of view, they function the same.

However, there are some things that functions and procedures
written in C and FORTRAN can do that those written in NCL

can't. To demonstrate this, consider the function min that

returns the minimum of an array. An NCL function definition

for rain would look something like the following example.

function min (x)
begin

min = 9e99

do i=0,totalsize(x)
if x[i] LT min then min = x[i] endif

endo
end

The difference comes when the parameter x is more than one

dimension. NCL has no way to handle indexing of an array

with an arbitrary number of dimensions. This doesn't mean

that NCL functions won't accept parameters with an arbitrary

number of dimensions, it just means that can not index these

arrays automatically. The following NCL function will convert

Fahrenheit to Celsius on arbitrarily sized arrays.

function f2c (x)
begin

NCAR Interactive Functional Specification 83

NCAR Command Language Specification

end
f2c = (x- 32) * 5/9

Functions written in C or FORTRAN are defined differently.
The details of an external function definition are covered in

Section 5.5, "User extension to function set."

5.2.6 NCL flow control

NCL is equipped with loops and conditional statements for

flow control. There are two kinds of loops: do loops and while

loops. The syntax for a do loop is:

do i = 0,99,2 x = x + i endo

do i = 0,99

x=x+l

y=x/i
endo

The first example is a one-statement loop that loops on the
variable i at steps of 2 and executes the statement x = x + i. The

endo keyword is necessary to instruct NCL that the last

statement in the loop has been reached. The second example
shows how to create a list of statements to execute at every

loop iteration. This is essentially an extension of the first case.

The syntax for a while loop is:

while(i LT 99)

x=x+l

y=x/i
i = i+1

endwhile

The if statement in NCL behaves just like if statements in other
languages. The syntax is:

if ((i kY 99) and (y[i] GT i))then

x=x+l

y[i] = x/i
else

x=x-1

endif

84 NCAR INTERACTIVE Functional Specification

Visualization Specification Block

The keyword if is followed by a Boolean expression followed

by the keyword then and a statement or statement list. At the
end of the statement either an else or an endifkeyword is

needed. As in other languages, "lazy" evaluation of

conditional expressions is used. In the above example this
means that as soon as the first term of the conditional

expression evaluates to false, the second conditional term is

skipped because the entire expression evaluates to false. In the

above example this means an potential error condition can be

avoided by ordering the conditional terms from left to right.

5.3 Visualization Specification Block

The visualization specification block is the part of NCL the

controls the graphics. It lets the user define a style of output

plot and assign a name to it. When the user wants to display

data in the plot style, the user calls the built-in procedures

assigndata with the data and display with the name of the

visualization specification block.

The contents of the visualization block are parameters to the

graphics device. These parameters are the same as the
resources for the HLUs defined in Section 4 of this document.

For this example, actual HLU resources are not used; These

are just examples.

visblk ncar mycontour {
NgbPIotStyle : CONTOUR
NmpMap: True
NmpOutline : PS
NmpProjection : OR
NvpX : .1
NvpY : .1
NvpWidth: .8
NvpHeight : .8

The name of the block defined above is mycontour. The

keyword ncar sets the graphics library to use. At first release

only NCAR Graphics and PoIyPaint will be supported. In the

NCAR Interactive Functional Specification 85

NCARCommandLanguageSpecification

future, other graphics libraries may be added. The syntax of

the statements within the block is completely different than the

rest of NCL. The syntax depends on the library chosen. For

NCAR Graphics, the syntax is: resource name first, followed

by a colon, followed by the value to set the resource to. For

PolyPaint, the syntax will be based on the application

command interface (aci) already implemented for PolyPaint.
NCL does not even look he region between the braces; it is

simply encoded into strings and passed to the graphics library

for parsing. It is therefore possible for different graphics
libraries to implement their parameter setting differently.

It is sometimes necessary to add or change the parameters in a

visualization block. A special built-in procedure called set is

used to accomplish this. For example, to set the data ranges

and transformation, the following script could be used.

ncl> set (mycontour,'NtiTitle", "Dataset i")
ncl> set (mycontour, "NcnXDataMin", -180);
ncl> set (mycontour, "NcnXDataMax", 180)
ncl> set (mycontour, "NcnYDataMin", -90)
ncl> set (mycontour, "NcnYDataMax", 90)
ncl> set (mycontour, "NcnXDimName", "ion")
ncl> set (mycontour, "NcnYDimName", "lat")
ncl> assigndata(mycontour, filel .varl{levelll000}{frtimel0});
ncl> display(mycontour)
ncl> frame

The next example shows how a sequence of frames could be

created using NCL. In this example the same data are always
plotted, but a new center of projection is provide for each

iteration. This gives the effect of rotation around the globe.

The display procedure does not require a data parameter

because the data have already been specified in the assigndata
call.

vsblk mycontour {

}
set(mycontou r,"NmpCenterLat', 0)
set (mycontou r,"NmpCenterLon",0)
ncl> assigndata(mycontour, filel.varl{levelll000}{frtimel0});
display(mycontour)

86 NCAR INTERACTIVE Functional Specification

Builtinfunctionsandprocedures

frame
doi=1,7

set(mycontour,"NiMapCenterLon", (i * 45))
display(mycontour)
frame

endo

This example shows how a visualization block can be changed

and updated using NCL. These kinds of features should help in

the production of animations.

5.4 Builtin functions and procedures

This section list some examples of built-in functions that will
be available when NCL is released. Built-in functions are

functions that are compiled and linked to NCL. Because of this

built-in functions have no parsing overhead that functions
written in NCL source have and have no data flow overhead

for external functions. Furthermore, built-in functions have

access to the NCL symbol table and can therefore accomplish

a wider variety of tasks. This section represents an incomplete
list.

5.4.1 GENERAL FUNCTIONS AND PROCEDURES

5.4.1.1 List- Is

The Is command provides the user with a listing of a directory.

The user must provide the pathname to the desired directory.

ncl> Is("~ethan/datafiles")
aH.cclf
nT.cdf

5.4.1.2 Change directory - cd

The cd command changes NCL's current working directory of

NCL.

NCAR Interactive Functional Specification 87

NCAR Command Language Specification

5.4.1.3 Read formatted ASCII file - readfascii

The readfascii function reads formatted ascii into an NCL

variable. This is used when the ascii file has a regular format,
meaning each number has a constant number of characters,

each column is separated by a constant number of white space

characters, and rows are separated by a one-character

delimiter. The user must specify the pathname of the file, the
number of dimensions, the size of each dimension, and a

format string.

ncl>varl = readfascii("/ul/ethan/d.cdr',2,[2,4],"F4")

The ascii

5.000

1.000

3.000

10.00

1.000

22.00

2.000

30.00

file for the preceding example could either:

or:

5.000 1.000

3.000 10.00

1.000 22.00

2.000 30.00

The resulting NCL array will be indexed as follows regardless

of the type of file organization. NCL will read each number in
order until it reaches an end of line. Based on the dimension

number and size information, NCL automatically determines

the appropriate index for each number. The following is a

printout of the variable defined above.

ncl> print(varl)

(o,o)5.o
(0,1) 1.o
(0,2) 3.0

(0,3) 10.0

(1,o)1.o
(1,1) 22.0

88 NCAR INTERACTIVE Functional Specification

Builtinfunctionsandprocedures

(1,2) 2.0
(1,a) a0.0

5.4.1.4 Read binary fortran file - readbfortran

The readbfortran function reads a variable from a FORTRAN

binary file. The user must specify the pathname, the number of
dimensions, and the size of the dimensions. When

readfortran is used, the order of the dimension sizes are in

column-by-row ordering.

ncl> varl = readbfortran('Tu1/ethan/f.bin",4,[100,100,5,5])

5.4.1.5 Read binary C file - readbc

Analogous to readbfortran, except it reads from a C binary
file. The dimension sizes are in row-by-column ordering

5.4.1.6 Read cray binary file - readcrayb

Reads and converts a file stored in Cray binary format.

5.4.1.7 Add NetCDF File - addnetfile

Since netCDF files easily map into the NCL data model, the

addnetfile procedure will directly add a file record to the

currently defined file record list.

5.4.1.8 Remove file - rmfile

Removes a file from the file record list.

5.4.1.9 Inquire about current variables - inquire

Prints out the contents of the current file record and variable

list. Information about every variable in every file record is

displayed.

NCAR Interactive Functional Specification 89

r

NCAR Command Language Specificatlon

5.4.1.10 Inquire about a specific variable - varinquire

Prints out the metadata information pertaining to a specific

variable. These data include dimensions, sizes, storage types,

and other associated attributes.

5.4.1.11 Write files - write, writeascii, writefort

Writes a variable to a file. write writes to a netCDF file.

writeascii creates an ascii file for the data and a descriptor file

for the variable's meta-data, writefort creates the same

descriptor file, but the data file is in fortran binary.

5.4.1.12 Write a file record - writefile, writeasciifile, writefortfile

Writes a file record to a file.

5.4.1.13 Variable total size - size

Returns the total size of a variable or expression.

5.4.1.14 Dimension size - dimsize

Returns the dimension size for a dimension.

5.4.1.15 Variable minimum and maximum - min and max

Returns the minimum or maximum of an entire variable.

5.4.1.16 Remove variable - rmvar

Undefines a variable and frees memory used by that variable.

5.4.1.17 Render display - display

Built-in entry point to the graphics libraries, display takes a

visualization specification block name and draws it onto the

output frame.

9O NCAR INTERACTIVE Functional Specification

Builtinfunctionsandprocedures

5.4.1.18 Assign data to visualization block - assigndata

Assigns data to a visualization block. These data are the data to

plot. Resources in the visualization specification block set
which dimension names in the data variable are used to select

the spatial dimensions of the variable.

5.4.1.19 Create a plot overlay - overlay

overlay coordinates the plotting of two or more plots. The

plots must be members of the same graphics library. The

procedure takes two visualization block names. The first is

called the base and the second is called the overlay. When one

plot is an overlay, it inherits the viewport and data

transformations of the base. When the base is displayed using

the display procedure, the overlay plots will be drawn in the

order in which the overlay procedure was called.

5.4.1.20 clear

Takes a visualization block name and clears the area of the

output frame used by that plot.

5.4.1.21 quit

Exits NCL. If any variable has been changed or created, NCL

will warn the user with a prompt that asks if they really want to

quit.

5.4.1.22 loadscript

Loads and executes a script from a file. The file can contain

function definitions, visualization blocks, and data

manipulation commands.

5.4.1.23 Load a defaults file - load_defs

Loads a user defaults file. This file is described in Section 4 of

this document, the High Level Utilities. The user defaults file

NCAR Interactive Functional Specification 91

NCARCommandLanguageSpecification

stores default resources for creating plots. To use the defaults

file the user must call load_defs and provide a pathname to the

file. Then any subsequent visualization specification blocks

will use the defaults specified in the currently loaded file. The

currently loaded defaults file can be changed without affecting

the current visualization blocks. Once a visualization block is

created, all of the applicable defaults are loaded and stored

with the visualization specification block named.

5.4.1.24 Set prompt- setprompt

Changes the default prompt string from "ncl>" to some user

specified string.

5.4.1.25 Read from keyboard - getstring

Retrieves a line of text from the keyboard.

5.4.1.26 Read a number from keyboard - getnum

Retrieves a number from the keyboard.

5.4.2 Built-in math functions

A wide range of mathematical data manipulation functions

will be supported on first release.

5.4.2.1 Trigonometric functions

All trigonometric functions on a standard scientific calculator

should be implemented.

5.4.2.2 Curve fitting

A least squares curve fit will be provided

92 NCAR INTERACTIVE Functional Specification

Userextensiontofunctionset

5.4.2.3 Grid interpolation

Functions for interpolation from an irregular grid to a regular

grid should be available, as well as interpolation from a regular

grid of one size to the size and resolution of another.

5.4.2.4 Statistics

To be added.

5.5 User extension to function set

Users must be allowed to extend the function set. Some likely

extensions are customized data ingestion methods and

customized data manipulation functions. Users should be able

to write their own functions in C or Fortran and be able to

follow step-by-step instructions to add their function to the

command language set. Addition of these functions should not

require the user to have their own copy of the NCL executable

in their home directory. This would unnecessarily waste user

disk space.

Most likely, a support application called nclextend will be built

for allowing the user to add to the function set. This

application will prompt the user for a list of source files,

include files, and libraries. An NCL function or procedure

declaration also needs to be entered. Finally, the parameters

from the NCL declaration need to be mapped into the C or

FORTRAN function parameters. Since the NCL data model is

different than the data model used in C and FORTRAN, the

user must provide information about what part of the

function's parameters will be passed to the C or FORTRAN

function. For example, each variable in NCL holds all of the

following information:

name

datatype
value

ndims

Name of variable

Datatype of variable

Actual value of vadable

Number of dimensions

NCAR Interactive Functional Specification 93

NCAR Command Language Specification

dimsizes[]
totalsize

dimnames[]
dimvals[]
dimvardt[]

na_s

attnames[]
attvals[]
attdtU

Array of dimension sizes
Total number of elements in variable.

Array of dimension names
Array of coordinate value arrays
Array of the data types of the coordi-
nate variables
Number of attributtes associated
with the variable

Array of attribute names
Array of attribute values
Array of attribute data

The following example demonstrates what adding a C function

to the NCL function set might involve. Consider the function

rain written in C:

float min(var, size)
float varD;
int size;

{
int i;
float value = 9.9e99;

for (i=0; i<size; i++)
if(var[i] < value) value = var[i];

return(value);
}

To add this function to the command set, the user must run the

special application to add it. First the user is prompted for the

NCL function declaration that will correspond to this function.

It may look something like this:

function min(x:numeric)

The next step is to provide the pathname of the source file, any

include files and any libraries needed.

The user must next enter the function or procedure name, the

number of arguments, and the types of each argument. The

user must then choose which parts of the input NCL

parameters map to each parameter in the source function. For

the current example, the only two parts of the input parameter

x that need to be mapped to the source interface are the value

and the totalsize fields. The user must specify that the value

94 NCAR INTERACTIVE Functional Specification

User extension to function set

part of the parameter x maps to the source parameter vat, and

the totalsize part of the x parameter maps to the size parameter

in the source function. A GUI will be provided so little to no

memorization is needed to provide this information.

Once this information has been entered, the nclextend

application will compile the source into a module callable by
NCL. This module will communicate with the NCL command

interpreter either through sockets or through remote procedure

calls. This is not the most efficient way of passing data but it

allows the user code and the NCL application code to be

separate entities and portable at the same time.

Users who want to maintain the same efficiency that the built-

in functions have, can compile their functions directly into the

NCL source. This, however, requires either the system
administrator to reinstall the NCL software or the user to

maintain their own copy of the NCL executable in their home

directory. This procedure will not be outlined until a more

thorough design has been completed. Having two options for

extending NCL will provide systems and site administrators

the flexibility to make their own policies in this matter.

NCAR Interactive Functional Specification 95

NCARCommandLanguageSpecification

96 NCARINTERACTIVEFunctionalSpecification

FunctionalspecificationofNCARInteractive'sGUI

SECTION 6 User interface requirements

design

and

NCAR Interactive's proposed Graphical User Interface (GUI)

is a plot tool, an interactive program that allows users to make

frames of single or multiple plots. This tool should also allow

users to explore their data graphically. The GUI should be a

WYSIWYG tool for producing publication-quality graphics.

This section of the functional specification has five main parts.

The first is a complete description of the requirements for the

user interface: what the user interface must be able to do. The

second part is an initial design specification of the user

interface: how we intend to provide the functionality specified

in the requirements section. This document specifies the GUI

design because the user interface defines the functionality of

the entire application. The third part addresses style

considerations that must be taken into account for a GUI. The

fourth part describes how to use defaults files. The fifth part

describes the use of Color Palettes.

6.1 Functional specification of NCAR Interactive's GUI

The functional specification of NCAR Interactive's GUI can

be organized into some general requirements. First, the GUI

must be usable by a wide variety of users with diverse

graphical requirements. Second, it must be standardized so

users of other similar applications will find it intuitive. Third, it

must allow the user to simply create plots and specify

information for those plots including the data specification for

that plot. Lastly, it must allow the user to explore data in an

intuitive manner.

NCAR Interactive Functional Specification

PACd[_ NOT FILME_

97

Userinterfacerequirementsanddesign

6.1.1

6.1.2

Usability of NCAR Interactive's GUI

A user interface communicates information from the program
to the user and communicates information from the user to the

program. If the user interface does not perform these functions

in a clear and concise manner, the application will be useless.

Therefore, the primary objective of NCAR Interactive's GUI is

to communicate its information clearly and in a

straightforward manner. Likewise, user interaction with the

program should be equally straightforward; it does no good to
display the information clearly if the user can't make

modifications in a clear way.

Complicating this task is the fact that NCAR Interactive must
be able to service a wide variety of tasks for users with
different skill levels. NCAR Interactive's user interface should

allow a novice user to create a simple plot. Likewise, it should

allow a more sophisticated user to create extremely complex

plots. The user interface should be a useful tool for both levels

of users. To accomplish this goal, the interface should

generally have two levels. Initially, it should only request the
bare minimum information necessary to create a plot;

however, it should have a second level that displays every

single piece of configurable information. This model allows

the novice user to use the system without becoming
overburdened with excess information. Also, it is more

reasonable to require a user who wants to do more
sophisticated plots to learn more about the application.

Adhering to standards

The primary requirements of the GUI for NCAR Interactive is

that it be intuitive and easy to use. To accomplish this, the GUI

should strictly comply with the Motif Style Guide since it will

be a Motif application. Also, additional standards for text entry

and accelerator keys need to be defined. This is extremely

important since this GUI will most likely be only the first of a

number of GUIs written to support NCAR Graphics. The

98 NCAR INTERACTIVE Functional Specification

Functionalspecificationof NCARInteractive'sGUI

decisions made in this area should be used in later GUIs as

well, so users of this application will not need to learn

conflicting methods to use this package. It is critical that good

long-range decisions be made at this early stage of the

interface design.

6.1.3 Plot and data specification

As a plot builder/viewer, the GUI must make it easy for users

to specify the information needed to create plots. This includes

using scrollbars, dialogs, and menus to input information.
Users find it much easier to choose their desired values from

options, than to have to remember the value and then type it in.
This also includes deciding on reasonable defaults for these

values so the beginning user can simply let things default.

Also, to support the wide range of NCAR Graphics users, it

should be possible for users to customize default values for
each of these fields.

Data specification has nearly the same requirements as plot
specification. In fact, the ability for the users to specify their

own set of defaults is even more important in this context

because of the incredibly wide variety of data formats. Since it

would be next to impossible for NCAR Interactive's GUI to

anticipate all the different data requirements, NCAR
Interactive will allow users a limited ability to configure this.

However, it is still vitally important for NCAR Interactive to

come up with data defaults that make sense for most users so

novice users can still use the program.

6.1.4 Data exploration

Data exploration is one of the other main goals of this

application. By using the interactive capabilities of an X

interface, it should be possible for the user to specify regions

of data directly, by simply pointing at a region of interest on a

plot. The application should make this type of interaction

simple and easy to use. The user should be able to use

NCAR Interactive Functional Specification 99

i

User interface requirements and design

techniques such as these to view data points from the plot or

set data points in the plot.

6.2 Initial design specification for NCAR Interactive's GUI

It is often useful to separate the different functions of an

application into separate windows of a GUI. For NCAR

Interactive, we will initially organize the interface with the

following five windows:

• main window

• plot specification window

• data specification and manipulation window

• region selection and data viewing window

• help window

Consider the descriptions of these windows as descriptions of

the GUI's functionality; the windows will probably not look

like this when NCAR Interactive is released.

The main window controls the application, allows the user to

manipulate the layout of plots, and is eventually used to

display the plots in a single frame. The plot specification

window sets the characteristics of each plot (such as line

width, color, etc.). The data specification and manipulation

window allows the user to specify variables to display in each

plot. In addition to spatial coordinates, it is possible to specify

a sequence of data (often called timesteps) for each plot. It also

allows the user to modify and create variables. The region

selection and data viewing window is used when the user

selects points or areas on the main window when the frame is

being displayed. It allows the user to interactively view the

data within the selected region and to apply that region

selection to other variables. (This will be explained further

later.) The help window provides descriptions of the

application to aid the user's understanding.

100 NCAR INTERACTIVE Functional Specification

InitialdesignspecificationforNCARInteractive'sGUI

6.2.1

File Help

Main window

Figure 3 shows that the main window contains a menu bar, a

work area, and a small control panel area.

Edit _I I II_ Layout tl

Icon
<Messages> Box

Display 0

Annotate 0

<3 L II>

FIGURE 3 main window

Each of these components support the three basic func-

tions of the main window. The main window is used to interac-

tively set the layout of the output frame, to display the frame,

and to allow annotation of the frame.

To do this, the main window will have three distinct user

states. The first state is the plot layout mode. In this state, the

user should be able to directly manipulate plots within the

frame. The second state is the plot display mode. In this state,

the main window will allow the user to view the plots on the

screen and interactively explore the data being displayed in

each plot. The third state is the frame annotation mode. In this

NCAR Interactive Functional Specification 101

Userinterfacerequirementsanddesign

mode, the user can draw anything in the window using point-

and-click drawing tools. Additionally, it will be possible for

the user to have multiple occurrences of the main window.

6.2.1.1 Menu bar

The menu bar will have three submenus: the File menu, the

Edit menu, and the Help menu. The File menu contains buttons

that perform actions that apply to the entire application like
saving the current state. The Edit menu is usually only used

during plot layout mode; it contains the buttons necessary to

bring up the plot specification window and the data

specification and manipulation window. The Help menu is

used to bring up the help window in one of its many different
states.

6.2.1.1.1 File menu

The File menu contains the following buttons that perform the
stated functions:

1. New

2. Open...

3. Load Defaults...

4. Save

5. Save As...

6. Print...

7. Exit

Completely clears all data and plot specifications

currently in application, allowing the user to start
over.

Reads in a previously saved session.

Loads in a global plot defaults file.

Saves the current session.

Saves the current session in a specific filename.

Prints the current plot and allows the user to specify

print parameters before actually printing.

Exits the application.

6.2.1.1.2 Edit menu

All of the options in this menu automatically put the main

window into plot layout mode; each option then performs the
stated function:

1. New Plot Creates a square bounding box in the workspace that

represents the extent of a new plot. It also brings up

the plot specification window with the new plot
selected.

102 NCAR INTERACTIVE Functional Specification

InitialdesignspecificationforNCARInteractive'sGUI

2. Change Plot

3. Delete Plot

4. Copy Plot

5. Undo

6. Overlay...

7. Edit Data

Brings up the plot specification window with the

selected plot. This button is inactive if there is no plot

currently selected.

Deletes the currently selected plot. Before it does this,

it brings up a dialog box to inform the user that this is
a destructive action to insure that the user doesn't

destroy a plot accidentally.

Copies the currently selected plot. First it puts up

another bounding box to represent the new plot and

then brings up the plot specification window with the

new plot.

Reverses the last action of the user. Actions that are

not reversible must first warn the user of that fact.

Brings up a dialog box that allows the user to select a

base plot for the new overlay from the current plots. It
also allows the user to select one of the current plots

for an overlay of the base plot or allow the user to

create a new plot to be used as the overlay plot.

Brings up the data specification and manipulation
window.

6.2.1.1.3 Help menu

The Help menu contains buttons to access the help facility:

1. On Context Turns the cursor into a question mark, allowing users

to click on the item they don't understand. The help

window comes up and displays the appropriate help
screen.

2. On Window Displays the help window with the help screen that is

appropriate for the main window in question.

3. On Help Displays the help window with the help screen that
describes the help interface in question.

4. On Keys Displays the help window with the help screen that

describes the accelerator keys and mouse actions in

question.

5. On Version Displays the help window with the help screen that

contains version information on the application in

question.

6.2.1.2 Work area

The work area of the main window has two basic functions. It

is used to manipulate the plot bounding boxes when the main

window is in plot layout mode, and it is used to display the

NCAR Interactive Functional Specification 103

Userinterfacerequirementsanddesign

plots when the main window is in plot display mode. It will be
a virtual area. In other words, users can use as much space as

they want in the work area, if they want to use more area than

is currently visible due to the size of the window, scroll bars

will be provided.

6.2.1.3 Control panel area

The control panel area is in the upper right corner of the main

window. It has two different controls. The first is a toggle box

that toggles the main window between plot layout mode, plot

display mode, and frame annotation mode. The second control
is a frame advance control. It will allow the user to move

forward and backward through all of the plots as a group.

6.2.1.4 Plot layout mode

In this state, the user can move and resize plots. Each plot

within the output frame will be represented by a bounding box.

The bounding box should textually display minimal

information about the plot. Users will be able to directly

change the size and placement of each bounding box, therby

changing the size and placement of the actual plot when it is
visualized.

The user will be able to directly manipulate attributes of each

plot by selecting the plot with M1 (mouse button 1) and then

selecting the Change Plot button from the Edit menu, which

would bring up the plot specification window for the selected

plot. There will also be a keyboard accelerator associated with
the Change Plot menu option; this will allow users to bring up

the plot specification window for a selected plot without

having to use the mouse. Additionally, it will be possible for

the user to simply double-click with M 1 on the plot they wish

to edit to bring up the plot specification window. This

redundancy is useful to make the application as user-friendly

as possible.

104 NCAR INTERACTIVE Functional Specification

i

Initial design specification for NCAR I_eractive's GUI

The user will be able to specify and modify the data associated

with each plot by using the data specification and manipulation
window. This window will be brought up by a variety of

methods similar to those used in the plot specification window.

First, the user can select any single plot with M 1 and then
select the Edit Data button from the Edit menu to bring up the

data specification and manipulation window for the selected

plot. There will also be a keyboard accelerator associated with
the Edit Data menu option. Also, it will be possible for the user

to simply double-click with M2 (mouse button 2) on the plot

for which they wish to modify the data. Again, all this

redundancy makes the application easier to use.

6.2.1.5 Plot display mode

In this state, the plot or plots within the output frame will be

displayed. It also will allow the user to move forward and
backward through timesteps of the plots. In addition, the user

will be able to change the timestep for specific plots, leaving

the rest of the plots on the same timestep.

It will also be possible to interactively explore the data while

in this mode by selecting data regions with the mouse. This

will be accomplished by users selecting the region they are
interested in, or by simply clicking on the single data point

they are interested in. The main window will work in
conjunction with the region selection and data viewing
window to show the values of the variables in the selected

region and allow additional region selection tools.

6.2.1.6 Frame annotation mode

In this state, the plots within the output frame are displayed as

a reference point for the annotation. It allows the user to add

any text or supported graphics to the output. This annotation

will show within the window until deleted; it does not depend

upon the particular frame currently being viewed. It can be

NCAR Interactive Functional Specification 105

i i iii

User interface requirements and design

thought of as a colored transparency placed over everything
else.

6.2.2 Plot specification window

The plot specification window (Figure 4) will be used to set

the characteristics of the specified plot. It will be displayed

Plotname] Defaults Extended Resource 4

Font Resources

Color Resources

etc ...

<_l ID

FIGURE 4 Plot specification window

when the user specifies a plot to edit and then uses one of the
actions described earlier to bring up the plot specification
window.

The plot specification window is a dynamic window. Each

occurrence of it may look slightly different. This is to

accommodate the many varieties of plots the user can create.

106 NCAR INTERACTIVE Functional Specification

InitialdesignspecificationforNCARInteractive'sGUI

The user will be able to change the name and set the type of

plot from within the plot specification window, but the exact

characteristics that are configurable from within the plot

specification window will depend upon the plot type the user

selects, since different plot types have different configuration

options. Additionally, a Data Input button will be available at

all times. This button will bring up the data specification and

manipulation window for the currently selected plot.

There will also be a toggle button available for the user to

select extended resources. This will allow the user to toggle

between the original state of the window and the extended

resources state of the window. When the window first comes

up, it will allow configuration of basic plot resources that are

most often changed by users. When the user selects the

extended resources state of the window, it allows the user to

configure all plot resources. Because there are so many plot

resources, and because many of them are difficult to

understand and used only infrequently, this model will hide the

more obscure resources from the user until they really need or

want to manipulate them. It is hoped that this will keep the

application easy to use for beginners while still allowing more

experienced users the ability to do more complex things.

The Defaults button will be described in "Default files" on

page 114.

NCAR Interactive Functional Specification 107

Userinterfacerequirementsanddesign

6.2.3 Data specification and manipulation window

The data specification and manipulation window (Figure 5)

will be used to set the data inputs for each _lot. It will be used

[Plotname [<PLOTTYPE> I

Variable List

92012712_aP.cdf P Pressure 100xl 10

Dimension List

FIGURE 5 Data specification and
manipulation window

to specify the data to be used within the selected plot. It will be
displayed when the user specifies a plot and then uses one of
the actions described in the main window section.

The data specification and manipulation window has two basic
functions. First, it allows the user to manipulate data by

reading data in from a file or by actually creating data. Second,

it associates this data with a given plot. Since both of these

functions will take place in the same window, the data

108 NCAR INTERACTIVE Functional Specification

Initial design specification for NCAR Interactive's GU!

specification and manipulation window can come up in one of
two states. If there is no currently selected plot, the data

specification and manipulation window will come up partially

inactive. The part of the window used for importing data will

be available, but the portion of the window that is used for

associating that data with a plot will be inactive.

6.2.3.1 Defining data

To allow the user to read data into the GUI, the user will use

the Add Data button in the data specification and manipulation

window. This will bring up a data selection box (Figure 6)
which looks similar to the Motif file selection box. This

Filter

/ullboote/brando/protol/*

Directories Files

do/protol/..

DataSelectionBox.c

DataSelectionBox.h

DataSelectionBox. i

DataSelectionBox.o

DataSelectionBox.rF

UxXt.c

UxXt.h

UxXt.o

Variable Long Name

Selection

/ul/boote/brando/protol/

0__ Filter J Cancel j Help I

FIGURE 6 data selection box

NCAR Interactive Functional Specification 109

User interface requirements and design

window will enable the user to select files in the same way as

the Motif file selection box, but it will also display the

variables contained within each datafile (as long as the file is in

a known format). From here the user can simply select

variables from the window to import into the GUI. After the

variables are imported, they can be associated with a plot.

The user can also create his own variables. This is done by

pressing the Define Variable button. This will bring up a
window with an interactive NCL session. Each variable that is

currently defined within the GUI will be available tO the NCL

session, and any variable instantiated while in the NCL session

can be imported to the GUI.

6.2.3.2 Associating data with a plot

Once data has been imported into the GUI, it is available to be

used within a plot. To do this, the user must have a plot

selected. The name of the selected plot will be displayed in the

upper left comer of the data specification and manipulation

window. Then the user can select the variables they want

displayed in the selected plot from the list of current variables.
Once this is done, the dimensions of the variable will be shown
in the scrolled window below the variables. The GUI will

either determine the dimension names from the data, or the

user will be prompted to provide dimension names. Then the

user can bind each dimension of the data to a spacial

dimension of the plot, or the user can specify any given
dimension to remain static. Once the user has successfully

bound the X and Y axis (and Z for 3-D plots) the data can be

plotted.

The user can also use only particular ranges of the variables'

dimensions. To do this, they would select the Edit Data Range

button on the line of the dimension they would like to modify.

110 NCAR INTERACTIVE Functional Specification

Initial design specification for NCAR Interactive's GUI

This will bring up the data range window (Figure 7), which

Min Max

a index value a index value

- [] Index by Coord var

Sort: <increasing>]

[()K !',k >lilY ',Cancell

FIGURE 7 data range window

allows the user to sort each dimension and select any

contiguous range of the dimension to be used in the plot. By

default, the plot uses the entire range of each dimension.

The data range window shows the minimum and maximum
value that exists within the dimension in the upper right comer.

In the lower right comer, the user can use the Option menu to
determine if and how the data is sorted. On the left side of this

window, the user can use the scrolled lists to select the data

range to be used in the current dimension by selecting the
maximum and minimum values to be used.

6.2.4 Region selection and data viewing window

The region selection and data viewing window (Figure 8) will

be used in conjunction with the main window during plot

NCAR Interactive Functional Specification 111

Userinterfacerequirementsanddesign

Dim

Name

display mode. It will be used to view the data values that are

r/x

t

i
i

I <VARIABLE> I

<It tl>J
Dim Name

FIGURE 8 Region selection and data viewing
window

currently being displayed in each plot. It will allow the user to

rubber-band a region within the main window and allow the

user to see the actual data values at the selected regions. There

will be a Format button in this window that will bring up a

window that will allow the user to specify the format in which

to display the variable values.

Additionally, if the user double-clicks on a value, the user

should be allowed to edit that value by either replacing it with

the defined missing value in the data, or by any value they

enter. The user will be allowed to have multiple instances of

the region selection and data viewing window. Each instance

will correspond to a different bounded region of the frame.

This will allow the user to compare different regions of data.

112 NCAR INTERACTIVE Functional Specification

InitialdesignspecificationforNCARInteractive'sGUI

6.2.5 Help window

The help window (Figure 9) allows users to recieve help on

any aspect of the application. The top portion of the window

Help Topics

Help on Help

I_>

FIGURE 9 help window

will contain a scrolled list of help topics available on the
application. The bottom portion of the window will contain a

scrolled text window with the text for the currently selected

help topic.

With this type of configuration, users will be able to browse

through the help screens simply by clicking on topics that

interest them. Likewise, if they are having problems with a

particular portion of the application, they can press the On

Context button in the Help menu of the main window. This

will change the cursor to a "?" and allow them to click on the

item they are having problems with. Once this has been done,

the help topic associated with that portion of the application

NCAR Interactive Functional Specification 113

Userinterfacerequirementsanddesign

will automatically be selected in the help window. The Help

on Help button within the help window automatically selects

the help topic associated with the help window.

6.3.1

6.3 Style considerations

This section of the document will be used to indicate our

choices for an NCAR Graphics GUI style guide. This will be

in addition to the Motif Style guide for GUIs written in Motif.

These choices may need to be modified in the future to support
other toolkits such as the Open Look widget set. At this time,

we are adopting all the behavior restrictions described in the

Motif Style guide as well as the following button bindings, key

bindings, key accelerators, and mouse actions.

Button bindings

To be added after showing prototypes to users.

6.3.2 Key bindings

To be added after showing prototypes to users.

6.3.3 Key accelerators

To be added after showing prototypes to users.

6.3.4 Mouse actions

To be added after showing prototypes to users.

6.4 Default files

Default files are extremely important to the use of NCAR

Interactive. By using the GUI, the user will be able to create
and load default files that can also be used with NCL and the

HLUs.

114 NCAR INTERACTIVE Functional Specification

Colorpalettes

The user will be able to load a general defaults file that will

apply to all plots he creates from that time forward. This is
called the global defaults file. The user will also be able to load

a defaults file directly into the specification of a single plot.

This is known as a plot-specific defaults file. With this

approach, the user can find a defaults file that works best for
most of his plot resources (global), and then use the specific

defaults file to change particular resources for a specific plot.

6.4.1 Global defaults

The main window is the part of the GUI that will deal with the

global defaults files. From the main window, the user will be
able to load a global defaults file by using the Load Defaults
button in the File menu. This will only be necessary if the user

doesn't like the "system defaults" that will come with NCAR

Interactive. The global defaults will only apply to the current
main window. In other words, if the user wants multiple main

windows, each one will have its own global defaults.

6.4.2 Specific defaults

The plot specification window is the part of the GUI that will
deal with the specific defaults files. From the plot specification
window, the user will be able to load a defaults file into the

current plot specification window. This will update all the
resources in the current window to reflect the new defaults.

Additionally, the user can take the current configuration of the
window and write it out as a defaults file.

6.5 Color palettes

To be filled in after prototyping.

NCAR Interactive Functional Specification 115

Userinterfacerequirementsanddesign

116 NCARINTERACTIVEFunctionalSpecification

TickMarks,TickMarkLabelsandGrids

SECTION 7 Detailed Resource Descriptions

This section contains useful detailed descriptions and diagrams

of the resources listed in Section 4 (High Level Utilities). This

section has not been updated with the most current information
on contour, vector, and streamline resources. This section will

not continually keep pace with the evolution of NCAR

Interactive code, but it will be updated when the code is frozen
for each release.

7.1 Tick Marks, Tick Mark Labels and Grids

These resources are shared by all 2D utilities and can be used

to control tick mark configuration.

7.1.1

7.1.2

NtmXGroup & NtmYGroup

These resources allow the user to combine both top and bottom

or left and right tick mark configurations so that only one set of
resources for each axis is needed. When these resources are

set, only the left and bottom tick mark resources are used to

configure the tick marks.

NtmMajorLineThickness & NtmMinorLineThickness

This sets the line thickness for the major and minor ticks.

Since tick marks belong to a given viewport, the thickness is
set as a fraction of the maximum viewport range.

7.1.3 NtmMajorLength & NtmMinorLength

Sets the length of the tick marks. This length is expressed as a

fraction of the maximum viewport range.

NCAR Interactive Functional Specification

PAGI_ _JkNO(.P_T FN._E._

117

i

Detailed Resource Descriptions

NtmMajorLineColor & NtmMinorLineColor

Sets the tick mark line color to a specific color index.

7.1.5 NtmMinorPerMajor

Sets the number of minor tick marks per major tick mark.

7.1.6

7.1.7

NtmLabelFont

Specifies what font to use for tickmark labeling. Related
resources are:

NtmLabelFontSize

NtmLabelFontAspect
NtmLabelFontColor
NtmLabelTextJust
NtmFontThickness ' '

NtmLabelTextAngle

NtmLabelOffset

This is the distance as a fraction of the maximum viewport

range, where all of the label justification points for the axis are

placed.

I I
1000_ Default

Justification Point

1000
_ DefaultOffset +5%

118 NCAR INTERACTIVE Functional Specification

.,_ _ _. = _ . ;;.__ 8,_ ,._ _._."_d_ '

Tick Marks, Tick Mark Labels and Grids

7.1.8 NtmBorder

Specifies how the plot or graph is outlined. The outline settings
should be:

The

none

perimeter (4 sides)

Two-sided (left and bottom axes)

Two-sided (Top and bottom axes)

Two-sided (left and right axes)

Two-sided (left and top axes)

Two-sided (right and top axes)

Two-sided (right and bottom axes)

Three-sided (no bottom axis)

Three-sided (no left axis)

Three-sided (no top axis)

Three-sided (no right axis)

following resource configure the border:

NtmBorderLineDashPattern

NtmBorderLineColor

NtmBorderLineDashLength
NtmBorderLineThickness

7.1.9 NtmAxisControl

Specifies characteristics of an axis. The settings are

Do not draw line portion of axis, only draw tick marks

Do draw line portion of axis and tick marks

7.1.10 NtmAxisLocation

Specifies the location to move an axis as a fraction of the

viewport range. This parameter is useful for moving the

NCAR Interactive Functional Specification 119

DetailedResourceDescriptions

bottom axis, for example, to the center of the viewport and

plotting a curve that intersects the x axis for some value of y.

NtmYRAxisLocation = -50%

A

NtmXTAxisLocation

l = -50%

7.1.11 NtmMajorGrid

Switches on the grid option. A grid is drawn connecting major

tick marks on opposite sides of the plot.

The following configure the major grid lines:

NtmMajorGridLineOashPattern

NtmMajorGridLineDashLength

NtmMajorG ridLineColor

NtmMajorG ridLineThickness

7.1.12 NtmMinorGrid

Switches on the grid option. A grid is drawn connecting minor

tick marks on opposite sides of the plot.

120 NCAR INTERACTIVE Functional Specification

Tick Marks, Tick Mark Labels and Grids

The following configure the minor grid lines:

NtmMinorGridLineDashPattern

NtmMinorGridLineDashLength
NtmMinorGridLineColor
NtmMinorGridLineThickness

7.1.13 NtmMajorOutwardLength

Specifies the length of the outward portion of the major tick
marks as a fraction of NtmMajorLength. The following shows
this.

I I I I I
0% 50% 100%

7.1.14 NtmMinorOutwardLength

Same as NtmMarkMajorOutwardLength.

7.1.15 NtmLabelFormat

Specifies the type of axis labeling for linear-style plots.

None

Use scientific notation [-] [i] [.] [q x 10 e
Use exponential notation
Use no-exponent notation ("normal" numbers)

7.1.16 NtmLabelFormatExponent

This parameter is used to specify the value of the exponent and

length of i above.

Any float value is the valid range
Other wise NCAR Graphics decides default value

NCAR Interactive Functional Specification 121

DetailedResourceDescriptions

7.1.17 NtmLabelFormatFraction

This parameter is used to specify the length off above.

Any float value is the valid range
NCAR Graphics decides the default value

7.1.18 NtmStyle

Tick marks come in a variety of flavors; therefore a tick mark

style resource is needed to distinguish between the types. Four

basic styles are found in tick marks, log, linear, time and

geographic tick marks. Log and linear tick marks are fairly

straightforward. However, time and geographic tick marks are

not. Time tick marks display units of time, everything from

minutes to years. Geographic tick marks display units of

degrees, minutes, and seconds as well as north, south, east, and

122 NCAR INTERACTIVE Functional Specification

Tick Marks, Tick Mark Labels and Grids

west. Below are examples of the vari.ous types of tick marks.

0.12

0.08

0.04

0.00

-0.04
>-

-0.08

-0.12

-0.16

Main Title

0.0 2.0 4.0 6.0 8.0 10.0

X-Axis Title

Linear tick marks

1°'___7 _
1o'p I / / / / _..

10 _ a

,,.,,":

'°'Fi

10' 10

Log tick marks

0.12

0.08

0.04

0.00

_,x -0.04

-0.08

-0.12

-0.16

Main Title

90S 54S 18S 18N 54N 90N

X-Axis Title

Geographic tick marks

Main Title

0.12 8 ' i ' t /._ _ '

0.08

O.04

0.00

-0.04

_t
-0.08

-0.12

.0.161 _ I i I _ l _ I

JAN91 APR91 JUL91 OCT91 FEB92 MAY92

X-Axis Title

Time tick marks

NCAR Interactive Functional Specification 123

Detailed Resource Descriptions

Since time and geographic tick marks are special the resource
names have either NtmGeo or NtmTime in front of the

resource name. Log and Linear tick marks share the same

resources. The following list of resources covers Log and

Linear specfic resources first and then Time and Geographic.

Each heading lists what mode the resource can be used in.

When no mode is provided in the heading then the resource

can be used in any mode.

7.1.19

7.1.20

NtmMode

There are four modes that tick marks can operate in. In

automatic mode tick marks are picked automatically. In

manual, the start end and spacing are specified by the user. In

explicit, an array of values in data coordinates is provided by
the user, and a tick mark is placed at every data point in the

array. This provides a way of completely customizing the tick
marks. The final mode is none, where no tickmark are drawn at

all. A separate tick mark mode is needed for each axis in the

plot.

NtmMaxTicMarks - Automatic Mode

This is used when the tick marks are in automatic mode. It

represents the maximum allowable tick marks. Most likely the
actual number of tick marks will be less.

7.1.21 NtmStart - Manual Mode

Used when in manual mode. Sets the starting point for the

major tick marks. If this is less than the minimum data point

for the viewport, the viewport data mapping is not changed

and the first tick mark will appear at the first tick location

where s*n > datamin. Where s is the spacing between major

tick marks and n is an integer multiplier representing the
number of the tickmark. If the start is greater than or equal to

124 NCAR INTERACTIVE Functional Specification

TickMarks,TickMarkLabelsandGrids

the minimum data point in the viewport, then the tick marks

begin at NtmStart.

7.1.22 NtmEnd - Manual Mode

Sets the ending point for the major tick marks. The conditions

for where the ending tickmark is placed are the reverse of the

starting point.

7.1.23 NtmSpacing - Manual Mode

Sets the interval between major tick marks.

7.1.24 NtmSpacingType - Manual Mode

Specifies what method is used to compute positions of the

major tick marks. In the examples below i is the tickmark

number, with zero being the first and the last one satisfies the

following condition MajorTick i <= end. Start, spacing and end

are NtmStart, NtmEnd and NtmSpacing.

MajorYick i = start + spacing * i
MajorTick i = start + spacing * 10 i

MajorTick i = start + (spacing) i

7.1.25 NtmMinorStart - Manual Mode

Sets the beginning point for minor tick marks. The default is

that the minors start at the same point as the major tick marks.

7.1.26 NtmMinorEnd - Manual Mode

Sets the ending point for the minor tick marks.

7.1.27 NtmValues - Explicit Mode

This is the resource for the explicit mode of tick mark

operation. NtmValues is an array of data points where tick

NCAR Interactive Functional Specification = 125

DetailedResourceDescriptions

marks are drawn. NtmValueIndex can be used to index

individual elements of the NtmValue array.

7.1.28

7.1.29

NtmNumTicks - Explicit Mode

This is the number of array elements provided in the Ntm

marks array.

NtmLabelsText - Explicit Mode

This is an array of strings used to label each of the tlck mark

values provided by the NtmValue resource. NCAR Graphics

function code may be encoded into the string to provide

configurability of the output string. If a Null string is present
no label will appear for the corresponding tick mark.

NtmLabelIndex indexes the NtmLabelsText array.

7.1.30 NtmMappingOrder

Specifies an increasing or decreasing mapping order on the
axis.

7.1.31 NtmGeoTickStyle

When geographic labeling style is selected there are several

styles for representing geographic coordinates. First, is degrees

only. In this case every tickmark is labeled with a real number

representing degrees and an N,S,W or E depending on what
the NtmGeoAxis parameter is set to for the axis. Second the

real number of degrees is converted to an integer number of

degrees followed by the number of minutes, followed by an
N,S,W or E. Finally, a degrees, minutes, and seconds display.

When geographic tickmark style is used, it is possible that the

tick start is greater in value than the end. This happens when

the start and end wrap around. This may be limited to the HLU

being used

126 NCAR INTERACTIVE Functional Specification

TickMarks,TickMarkLabelsandGrids

7.1.32

This tickmark style can only be used with non-mapped plots.

See the mapping composite resource for labeling mapped

plots.

NtmGeoTickAxis

For each axis whether the axis is latitude or longitude is

specified.

7.1.33 NtmTimeTickStyle

When time labeling style is selected, several styles can be

labelled. The first thing set is what the units are that separate

major tick marks. These can be seconds, minutes, hours, days,

weeks, months, and years.

The time tick style is very difficult to specify since various

formats can be used to express time.

The simplest case is when the input data is regularly spaced
time indices. For this case a base time for the first data element

and a time spacing need to be specified.

The hardest case is when the input data is irregularly spaced
and some user convention has been used to specify the time
coordinates of the data.

7.1.34 NtmTimeDataBase

This is the time in year, month, day, hour, minute, and seconds.

This value corresponds to the left comer of the viewport for
the X-axis and the bottom comer for the Y-axis. This is not the

first tickmark value. This option can be used when data is

regularly spaced. Even for Automatic mode time tick

generation NtmTimeDataBase and NtmTimeDataSpacing
must be set.

NCAR Interactive Functional Specification 127

DetailedResourceDescriptions

7.1.35 NtmTimeDataSpacing

The amount of time between each data point.

7.1.36 NtmTimeTickStart - Manual

The time value in year, month, day, hour, minute and seconds
of the first tickmark.

7.1.37 NtmTimeTickEnd - Manual Mode

Ending time value.

7.1.38 NtmTimeTickSpacing - Manual Mode

Spacing of tick marks in years, months, days, hours, minutes
and seconds.

7.1.39 Explicit Mode Time Ticks

Explicit mode time tick marks rely heavily on the 2D data
transformation used by the HLU. Further research on how time

coordinates are used for irregular and regularly spaced data is

needed. Explicit mode requires an array of data coordinates

which represent locations to place tick marks. Data

coordinates that make up 2D data transformations are usually

real vaul numbers. Converting from some user convention to

the data transformation does not appear to be trivial at this
time.

7.2 LEGENDS

See legend description in the Annotation section.

7.3 LABELBARS

See labelbar description in the Annotation section.

128 NCAR INTERACTIVE Functional Specification

TITLES

7.4 TITLES

Titles are special kinds of text items in which the position of
the text is defaulted to be at some fixed location, above, below,

right or left of the plot. In the case of X and Y titles the
location of the title will be guarenteed not to interfere with the

tickmark labels. Resources for small adjustments up/down and

left/right are provided as well as a resource for flipping the

rotation of a title. This is particularly useful for the Y axis title.
It is often a matter of taste how the Y axis title is positioned.

The following subsections list only resources for Main titles.

This is because the same type of resources are used for X and
Y titles.

7.4.1 NtiMainText

Sets text used to create main title. NCAR Graphics function

codes can be used to configure output string. See NCAR

Graphics 3.0 Manual.

The following resources set the remaining attributes for the
main title:

NtiMainFont

NtiMainFontSize

NtiMainColor

NtiMainTextJust

NtiMainFontAspect
NtiMainFontThickness

NtiMainTextAngle

NCAR Interactive Functional Specification 129

DetailedResourceDescriptions

7.4.2 NtiMainXOffset

Moves the title from its default position by some offset in the

X direction. This value is a percentage of the X axis of the
viewport.

Justification Point

MAINeTITLE _dAIN TITLE

Default

X-axis of viewport

Offset -50% w/Justification

point change

A negative offset is to left and a positive is to the rigtht.

7.4.3 NtiMainYOffset

Moves the title from its default position by some offset in the

Y direction. This value is a percentage of the Y axis of the

viewport.

7.4.4 NtiMainPosition

Can be set to top or bottom for main titles and X Axis. For Y

titles it can be left or right.

7.5 MAPS

Maps can only be used in the 2D utilities CONTOUR,

VECTOR and STREAMLINE. In these utilities maps can
either be on or off.

130 NCAR INTERACTIVE Functional Specification

I

MAPS

7.5.1

7.5.2

The following resources define the layout and projection of a

map.

Nmp

Turns on and off the map options.

NmpProjection

This attribute determines which type of projection is used to

display a map. The value of NmpProjection can be one of ten

types. See the NCAR Graphics User's Guide Version 2.00 (pp.

206-210) for a detailed description of these map types.

LC - Lambert conformal

ST- Stereographic

OR - Orthographic

LE - Lamber equal area

GN - Gnomonic

AE - Azimuthal equidistant

SV - Satellite-view

CE - Cylindrical equidistant

ME- Mercator

MO - Mollweide-type

The default is CE.

NCAR Interactive Functional Specification " 131

Detailed Resource Descriptions

7.5.3 NmpTicks

This turns on and off the map tick mark option. When on tick

marks are drawn around the perimeter of the map where grid

lines intersect the perimeter.

Related resources are:

NmpTickLength
NmpTickThickness
NmpTickColor

7.5.4 NmpTickLabels

This turns on and off the labeling of the map tick marks.

Related resources are:

NmpTickLabelFont
NmpTickLabelFontColor
NmpTickLabelFontSize
NmpTickLabelFontAspect
NmpTickLabelFontThickness
NmpTickLabelFontTextAngle
NmpTickLabelTextJ ust

7.5.5 NmpTickLabelStyle

Select different ways of labeling geographical tick marks.

There are three styles to choose from: Degrees only, degrees

and minutes, and degrees, minutes and seconds.

7.5.6 NmpGrid

This attribute specifies whether or not to turn the grid on. The

grid consists of latitude and longitude lines at spacing specified

by NmpGridSpace.

The default is "on".

132 NCAR INTERACTIVE Functional Specification

MAPS

7.5.7 NmpGridDotSpace

This parameter specifies the distance between points used to
draw a grid in degrees. The default is 1.0. The values must fall
between .001 and 10.

7.5.8 NmpGridSpace

This parameter specifies the grid spacing in degrees. A zero

will turn the grid off. The default is 10 degrees. See the

NmpGridDashPattern attribute for the dash pattern definition

of the grid lines.

7.5.9 NmpUserLinesDotDist

This attribute specifies the distance between clots along a
dotted line drawn by MAPIT.

The default value is 12 (out of 4096).

7.5.10 NmpPlotterResltn

This attribute specifies the width of the target plotter in plotter

units. The value is used for calculating distances, for example.
The default is 4096.

7.5.11 NmpUserLinesDashPattern

This attribute specifies the dash pattern to use for lines drawn

by the MAPIT utility. It is a 16-bit value. The default is 21845
(0101010101010101 binary).

7.5.12 NmpUserLinesType

This is a parameter which specifies whether or not lines drawn

by the MAPIT utility will be dotted or solid. Dotted lines are

affected by the NmpUserLinesDotDist attribute and solid lines

are determined by the NmpUserLinesDashPattern attribute.

NCAR Interactive Functional Specification 133

Detailed Resource Descriptions

The value is either "dotted" or "solid". The default is "solid".

7.5.13 NmpPerimLineDashPattern

This sets the line attributes for the map perimeter.

Related resources are:

NmpPerimLineDashLength
NmpPerimLineColor
NmpPerimLineThickness

7.5.14 NmpGridLineDashPattern

This sets the line attributes for the latitude and longitude grid
lines.

Related resources are:

NmpG ridLineDashLength
NmpG ridLineColor
NmpGridLineThickness

7.5.15 NmpLimbLineDashPattern

This sets the line attributes for the limb lines.

Related resources are:

NmpLimbLineDashLength
NmpLimbLineColor
NmpLimbLineThickness

7.5.16 NmpCOLineDashPattern

This sets the line attributes for the Continental Outlines.

Related resources are:

NmpCOLineDashLength
NmpCoLineColr
NmpCOLineThickness

134 NCAR INTERACTIVE Functional Specification

MAPS

7.5.17 NmpUSLineDashPattern

Sets the line attributes for the US state outlines.

Related resources are:

NmpUSLineDashLength
NmpUSLIneThickness
NmpUSLineColor

7.5.18 NmpPOLineDashPattern

Sets the line attributes for the political country outlines.

Related resouces are:

NmpPOLineDashLength
NmpPOLineThickness
NmpPOLineColor

7.5.19 NmpLimbLine

This is a boolean parameter which is either "on" or "off". "on"

specifies that a limb line should be drawn on the map; "off"

specifies that it should not. The default is "on".

7.5.20 NmpOutlineType

This parameter determines the types of outlines used in a map.

NO - No outlines are generated

CO - Continental outlines are generated

US - U.S. state outlines are used.

PS - Continental, international, and U.S. state outlines are
used.

PO - Continental and international outlines are generated.

NCAR Interactive Functional Specification 135

DetailedResourceDescriptions

7.5.21 NmpOutlines

This parameter specifies whether or not outline dashpatterns
are on or off.

7.5.22 NmpElliptical

This parameter allows a user to create a map inscribed within

an ellipse. The bounds of the ellipse are set by the normal

rectangular perimeter. This parameter can be either "on" or
"off". The default is "off".

7.5.23 NmpLabels

This parameter determines whether or not to label the

meridians, the poles, and the equator.

The value may be "on" or "off'. "on" is the default.

Related resources are:

NmpLabelsFont
NmpLabelsFontSize
NmpLabelsFontColor
NmpLabelsFontThickness
NmpLabelsFontAspect

7.5.24 NmpMinVectorLength

Points closer than this value to a previous point are omitted.

The default value is 4 (out of 4096).

7.5.25 NmpPerim

This attribute specifies whether or not to draw a perimeter

around a map. The default is "on".

136 NCAR INTERACTIVE Functional Specification

i

MAPS

7.5.26 NmpSatDistance

This parameter determines how many Earth radii the satellite
is from the center of the earth.

7.5.27 NmpSatSight2Center

When NmpSatDistance is > 1, this parameter measures the
angle between the line to the center of the earth and the line of

sight. If this value is 0, the projection shows the earth as seen

by a satellite looking straight down (the "basic view").

The default value is 90.

7.5.28 NmpSatU2Projection

When NmpSatSight2Center is non-zero, this parameter

measures the angle from the positive u axis of the basic view to
the line OP, where O is the origin of the basic view, and P is the

projection of the desired line of sight. This value is positive
when measured counter clockwise.

7.5.29 NmpProjectionOrigin

This is an array of 2 elements which specify the coordinates of
the origin of projection. The first element is the Latitude and

the second is the longitude.and the second is the longitude.

The default value is 0, 0.

7.5.30 NmpProjectionRotation

This is the angle of rotation of a projection. The default value
is 0.

NCAR Interactive Functional Specification 137

DetailedResourceDescriptions

7.5.31 NmpRectLimitType

This parameter specifies how to interpret the rectangular limits

(NmpRectLimitl, NmpRectLimit2, NmpRectLimit3,

NmpRectLimit4) of a map. The type can be one of the

following: MAX, CORNERS, LIMITS, ANGLES,
EXPLICIT.

MAX - The maximum useful area produced by the projection

is plotted. The limit parameters are not used.

CORNERS - (Limitl, Limit2) and (Limit3, Limit4) represent

opposite comers of the map. The Limits represent coordinates

in latitude and longitude.

LIMITS - The limits 1-4 specify the min and max values of U

and the rain and max values of V respectively.

ANGLES - Limits 1-4 represent positive angles in degrees

which define the angular distances from a point on the map to

the left, right, bottom, and top edges of the map, respectively.

EXPLICIT - Limits 1-4 are two-element arrays giving the

latitudes and longitudes in degrees of the four comers of a

map.

For a detailed explanation of these parameters, see the
discussion of the MAPSET parameters in the EZMAP section

of the NCAR Graphics User's Guide Version 2.00.

7.5.32 NmpRectLimitl

see above

7.5.33 NmpRectLimit2

see above

138 NCAR INTERACTIVE Functional Specification

i

MAPS

7.5.34 NmpRectLimit3

see above

7.5.35 NmpRectLimit4

see above

7.5.36

7.5.37

NmpBoundMask NmpBoundMaskSize

NmpBoundMaskType

These three parameters specify what map boundaries to mask.

NmpboundMask is an array (size NmpBounMaskSize) of map
area identifiers which are masked out if NmpBoundType is

"masked", or it is an array of map area identifiers which are

not masked (everything else is) if NmpBoundType is
"unmasked".

In this manner, if the user wants to mask out the boundaries

around Cuba, for example, NmpBoundMask would equal 602,

NmpBoundMaskSize would equal 1, and

NmpBoundMaskType would equal "masked".

If, on the other hand, the user wants to mask out everything

except Cuba, NmpBoundMaskType would equal "unmasked".

NmpGridMask NmpGridMaskSize NmpGridMaskType

These three parameters specify what areas grid lines will be
masked or unmasked over. These parameters work in the same

fashion as the NmpBoundMask parameters, except grid lines

are masked instead of political boundaries.

7.5.38 NmpLineMask NmpLineMaskSize NmpLineMaskType

These three parameters specify what areas lines drawn by the

user wiI1 be masked or unmasked over. These parameters work

NCAR Interactive Functional Specification 139

DetailedResourceDescriptions

in the same fashion as the NmpBoundMask parameters, except
user lines are masked instead of political boundaries.

7.5.39 NmpAreaFill NmpAreaFillSize NmpAreaFillType

NmpAreaFillColor NmpAreaFillPattern

These fill parameters are similar to the above masking

parameters except that the color of the fill areas and the pattern

of the fill are supplied in the NmpAreaFillColor and the

NmpAreaFillPattern arrays, respectively. The size of these

arrays is NmpAreaFillSize.

NmpAreaFill is an array of map area identifiers which specify
areas to be filled (if NmpAreaFillType is "fill") or areas not to

be filled (if NmpAreaFillType is "nofill").

NmpAreaFillColor is an array of indices into a color table

which specifies the color of each area. If no color array is

provided, the high level utility will automatically generate one.

NmpAreaFillPattern is an array of fill flags. Each element in

the array takes on one of the following values:

1 solid

2 parallel lines

3 criss-crossed orthogonal lines

4 lines at varying angles and spacings

5 dots? circles? other other shapes or pattems?

1 is the default.

7.5.40 NmpLatLabels, NmpLonLabels

These parameters detail how to label longitude and latitude

lines on a map projection.

140 NCAR INTERACTIVE Functional Specification

MAPS

7.5.41

If, for example, your map projection is a complete globe with

the center of projection at 0 degrees longitude and 0 degrees

latitude, the latitude lines will intersect the perimeter at several

locations around the globe. The longitude lines, on the other

hand, will intersect the perimeter at only two points on the

projection: the North and South Poles.

Labeling the latitude lines where they intersect the perimeter

of the globe is not a problem, but labeling the longitude lines at

the perimeter intersection is; all the labels will overlap at the

poles.

Two labeling schemes are provided to address this problem:

labeling on the perimeter where the grid lines intersect the

perimeter and labeling on the map along a line of constant

latitude or longitude. This latter method allows the user to pick

the equator, for example, as a line of constant latitude along

which the longitude labels will appear. In this manner, the user

can label the latitude lines at the perimeter and the longitude

lines along the equator or some other line of latitude.

This resource specifies which labeling method to use for the

latitude and longitude labels, respectively. Either resource

(NmpLatLabels, NmpLonLabels) can have any of these
values.

"off' - turn off labeling

"perimeter" - label at the point where the grid line intersects

the perimeter

"constant_grid" - label along a constant grid line

NmpLatLabelConstant, NmpLonLabelConstant

These parameters are used only when a NmpLatLabels or

NmpLonLabels are set to the "constant_grid" type. If
NmpLatLabels is "constant_grid", then NmpLatLabelConstant

NCAR Interactive Functional Specification 141

......... , , |

Detailed Resource Descriptions

7.5.42

7.5.43

7.5.44

should be set to the value of constant LONGITUDE along

which the latitude labels will appear.

Likewise, if NmpLonLabels is set to "constant_grid", then

NmpLonLabelConstant should be set to the value of constant

LATITUDE along which the longitude labels will appear.

The NmpLatLabelConstant can be any valid real longitude
value (- 180.,+ 180.), and the NmpLonLabelConstant can be

any valid real latitude value (-90., +90.).

0. is the default for both parameters.

NmpLatLabelStyle, NmpLonLabelStyle

These parameters specify the format for latitude and longitude

labels. They may be in one of three formats.

"degrees" - The label is a real number in degrees

"minutes" - The real number of degrees is converted to an

integer number of degrees followed by the number of minutes.

"seconds" - A degrees, minutes, seconds display.

The default is "degrees".

NmpLatLabelSpaee, NmpLonLabelSpaee

These parameters set the spacing in degrees between labels.

The default is the NmpGridSpace value.

NmpLatLabelFont, NmpLatLabelFontSize,
NmpLatLabelFontThiekness, NmpLatLabelColor,

NmpLatLabelFontAspect, NmpLonLabelFont,

NmpLonLabelFontSize, NmpLonLabelFontThickness,

142 NCAR INTERACTIVE Functional Specification

XYPLOT

7.5.45

NmpLonLabelColor, NmpLonLabelFontAspect

These parameters set the characteristics of the text, such as

size, color, font, etc. These attributes are analagous to the

corresponding text resources, ges are 1.

Miscellaneous

A MAPIT function and Great Circle function will need to be

provided for drawing lines and arcs between points.

7.6 XYPLOT

An XY plot is a two-dimensional plot of zero or more curves.
The functionality is similar to that found in the NCAR

Graphics Autograph utility.

An XY plot can have any number of curves. For each curve, a

line style, color, pattern, etc. must be specified or defaulted.

These attributes are passed as arrays of attributes. The size of

the array is determined by the number of curves in the plot
(NxyNumCurves).

7.6.1 XY Plot General Parameters

The following parameters represent the arrays of attributes for
plot curves.

7.6.1.1 NxyNumCurves

This is an integer which specifies the number of curves which

will be plotted.

1 is the default value.

NCAR Interactive Functional Specification 143

i i

Detailed Resource Descriptions

7.6.2 XY Plot Curve Parameters Arrays

The following parameters are arrays of size NxyNumCurves.

if using the array scheme for defining curves. Each curve in a

plot has one element from each array which specifies a

particular curve attribute. For example, if you were plotting 3

curves, curve I wouId be defined by the attributes in the first

element of each of the following arrays, curve 2 and 3 would

be defined by the second and third elements, respectively.

If using the index scheme for defining curves, the following

parmeters effect a single curve which is specified by the

NxyLinelndex parameter.

7.6.2.1 NxyLineStyle

This attribute specifies the types of curves to use in an XY

plot. The three possible types are Auto, Dashed, and Labeled.

If Auto (the default) is chosen, then XYPLOT HLU will

automatically generate curves which are solid lines interrupted

periodically by a letter of the alphabet.

If Dashed is chosen, then the user must pass a dash pattern,
which is defined below. The XYPLOT HLU will use this dash

pattern to represent the plot curve.

If Labeled is chosen, then the user must pass a string which

represents the line label. This attribute is also defined below.

The XYPLOT HLU will use the string pattern to represent the

plot curve.

7.6.2.2 NxyLineIndex

This attribute specifies the index of the current curve in an

array of curve data. When setting other resources, such as line
thickness or color, these resources will apply to the line/curve

specified by the NxyLineIndex. When using this indexed

scheme to change the attributes of other curves, the

144 NCAR INTERACTIVE Functional Specification

XYPLOT

NxyLineIndex must be changed to the corresponding curve

number before setting the attributes for another curve.

The default value is 1, the first element of an array of curve
data.

7.6.2.3

Related resources are:

NxyLineThickness
NxyLineColor
NxyLineSmooth
NxyLineDashPattern
NxyLineDashLength

NxyLineLabelText

This is an array that holds the line labels for each curve. If

nothing is set and line labeling is turned on then the curve are

labeled by their order in the list of curves.

NxykinekabelFont
NxyLineLabelFontSize
NxyLineLabelFontThickness
NxyLineLabelAspect
NxyLineLabelFontColor

7.6.3 XY Plot Control Parameters

These parameters control the display of the plots, such as how

to interpret the data with implied coordinates, and how to

interpret missing values. Some of these parameters will be

arrays of values when using the array scheme for defining

curves, and some will be scalar values when using the indexed

scheme for defining curves.

7.6.3.1 NxyScheme

This parameter determines how the attribute resources are

interpretted - either as arrays or single values.

If NxyScheme is "array", then the attribute resources, such as

NxyLineLabelText and NxyLineLabelFontColor, are treated

as arrays of size NxyNumCurves. Each element of the array

NCAR Interactive Functional Specification 145

i

Detailed Resource Descriptions

will apply to a separate curve, i.e. the first element applies to
the first curve and so on.

If NxyScheme is "index", then the attribute resources are

treated as single values. The value of NxyLineIndex

determines which curve or line the attribute resources apply to.

7.6.3.2 NxyControlPlotType

This parameter specifies the format of the input data.

The data can be in one of six formats.

1. The data is one or more singly dimensioned arrays (one per

curve) of Y data values. The X coordinates are implied; they

go from I to the number of points defining a curve. Each of the

Y arrays has a size of NxyLineNpoints.

Curve Y 1 Curve Y2 Curve Yn

o

O

Z

2. The data is one or more singly dimensioned arrays (one per

curve) of Y data values, as above, and one singly dimensioned

146 NCAR INTERACTIVE Functional Specification

XYPLOT

array of X data values. In this plot type, all of the curves share

the same X data points but different Y data values.

X Data Curve Y 1 Curve Y2 Curve Yn

,l,,,,a

©

©

Z

3. The data is one doubly dimensioned array of Y data values.

One dimension of the array is size NxyLineNpoints, and the
other is NxyNumCurves. As in case 1 above, the X data is

implied.

Y data array

Number of curves

o

©

©

Z

NCAR Interactive Functional Specification 147

ii 1 11 i

Detailed Resource Descriptions

4. The data is one double dimensioned array of Y data values,

as above, and one singly dimensioned array of X data values.

X Data Array

Y Data Array

Number of curves

.9
O

O

,.Q

Z

5. This data format is 2 doubly dimensioned arrays of X and Y

data. Both arrays are dimensioned NxyLineNpoints by

NxyCurveNum.

X Data Array

Number of curves

Y Data Array

Number of curves

148 NCAR INTERACTIVE Functional Specification

XYPLOT

6. This data format consists of arrays of XY pairs. In this case

there is one curve per array, but each array can have a different

number of points. Each array is 2 dimensional, where one

dimension is the number of points and one dimension is 2 (X
and Y).

X Y X Y X Y
¢O

°_,,i
O

O
g.q

G)

.,=
©

©

,.Q

t-c3

r,.)

7.6.3.3 NxyYLinel, NxyXLinel, NxyYline2, NxyXLine2,

...NxyYlineN, NxyXlineN

These parameters are the X and Y data arrays. Their

dimensions and ordering depend upon the value of

NxyControlPlotType, NxyControlRows, and
NxyControlOrder.

Depending on the value of NxyControlPlotType, N may range

from 1 to NxyNumCurves.

For example, if NxyNumCurves = 3, and NxyControlPlotType
= 2, then there will be four data arrays defined:

NxyXLine 1 - the X data points shared between all three curves

NCAR Interactive Functional Specification 149

!

Detailed Resource Descriptions

NxyYLine 1, NxyYLine2, NxyYLine3 - the three Y arrays for
each curve.

7.6.3.4 NxyControlRow

This specifies the dimensioning of curve data that has two

dimensions (except for case 6 above).

1 the first dimension is curve number and the second is the

point number.

2 the first dimension is the point number and the second is the
curve number.

1 is the default.

7.6.3.5 NxyControlOrder

This parameter specifies what order the two-dimensional data

is stored in, Fortran or C.

C - the last dimension varies fastest.

Fortran - the first dimension varies fastest.

The default is C. ??????

7.6.3.6 NxyControlInvert

This attribute allows the user to graph x as a function of y

0 normal graph

1 lets x = f(y) and thus invert the graph

0 default value

7.6.3.7 NxyControlWindow

This attribute allows user to omit curve portions falling outside

the grid window.

150 NCAR INTERACTIVE Functional Specification

XYPLOT

0 No omission

1 Omit portions outside the grid window

0 default value

7.6.3.8 NxyControlMissingValue

This parameter defines missing values in data.

1.E36 is the default, but it can be assigned any value.

7.6.3.9 NxyControlXMin

Specifies the minimum X user coordinate.

NxyControlMissingVaIue - Autograph calculates the

minimum for each graph

float value - specifies the minimum value to use.

NxyControlMissingValue is the default value

7.6.3.10 NxyControlXMax

Specifies the maximum X user coordinate.

Valid values and default are analogous to NxyControlXMin

7.6.3.11 NxyControlXSmallest

If NxyControlXMin is NxyControlMissingValue and therefore
the XYPLOT HLU computes the minimum value, values less

than NxyControlXSmallest will not be considered in the

computation.

any float value is valid

NxyControlMissingValue is the default value (XYPLOT HLU
computes it).

NCAR Interactive Functional Specification 151

I

Detailed Resource Descriptions

7.6.3.12 NxyControlXLargest

Analogous to NxyControlXSmallest.

7.6.3.13 NxyControlYMin NxyControlYMax

NxyControlYSmallest NxyControlYLargest

The Y parameters are all analogous to the X parameters
above.

7.7 CONTOUR

The contouring HLU should esentially implement the

functionality of CONPACK without requiring the user to

understand a lot of the messy details involved with

coordinating the EZMAP, GRIDAL, AREAS, PLOTCHAR
and LABELBAR utilities. This is a draft list of the resources

needed to specify a contour plot. The CONTOUR HLU uses
all of the common composite resources listed in section 4.3.
The resources listed here are specific to creating, filling and

drawing contours.

7.7.1

7.7.2

NcnDataType

Specifies whether the input array is integer, float or double.

NcnXDataGridType & NenYDataGridType

The contouring utility will handle regular, non-cartesian

regularly spaced, irregularly spaced and randomly spaced data.

Regular grids can be defined as grids where each coordinate

pair can be calculated by evaluating the following functions.

XCoordinate = Xo+ i * (Xnx-Xo) / nx

YCoordinate = YO + j * (Yny " Yo) / ny

152 NCAR INTERACTIVE Functional Specification

CONTOUR

Non-cartesion regularly space grids are grids where there are

not regular linear steps but the steps represent some linear

function. An example of this kind of grid is a vertical profile of

the atmosphere where the Y direction varies as a log scale of

pressure. Coordinate values for non-cartesian regular grids can

be computed by the following types of equations.

XCoordinate = FX(i)

YCoordinate = FY(j)

For random and irregular spaced grids are grids where there

are no functional relationships between the coordinates that
can be used to calculate the coordinates. The difference

between random and irregular is that all points for a given Y

index share the same X coordinate value and all points for a

given X index share the same Y coordinate value.

7.7.3

7.7.4

7.7.5

NcnXDataDim

Specifies which dimension of the data array should be mapped

to the X dimension of the output frame.

NcnYDataDim

Specifies which dimension of the data array should be mapped

to the Y dimension of the output frame.

NcnXDataCord & NcnYDataCord

These are not used differently based on the type of grid. The

resource is not used for regular grids. Instead the
NcnXDataMax, NcnXDataMin, NcnYDataMax, and

NcnYDataMin. For any other type of grid these hold all of the

coordinate values for each index or in the case of random grids

all of the coordinates for each point.

NCAR Interactive Functional Specification 153

DetailedResourceDescriptions

7.7.6

7.7.7

7.7.8

7.7.9

7.7.10

7.7.11

7.7.12

NcnXDataMax & NcnXDataMin

For regular grid, these set the beginning and ending X
coordinates.

NcnYDataMax & NcnYDataMin

For regular grids, these set the the beginning and ending of the
Y data coordinates.

NcnXStart

Used to specify the minimum coordinate that will be visible.

This is the data point that maps to the left side of the viewport.

NenXEnd

Used to specify the maximum coordinate that will be visible.

This is the data point that maps to the right side of the

viewport.

NenYStart

Used to specify the minimum coordiate that will be visible in
the Y direction. This is the bottom of the viewport.

NenYEnd

Used to specify the minimum coordiate that will be visible in
the Y direction. This is the bottom of the viewport.

NenIntervals

Array of contour inervals. If this is unset intervals will

automatically be picked.

154 NCAR INTERACTIVE Functional Specification

CONTOUR

7.7.13 NcnCIntervalFillPattern

Fill pattern for each interval.

7.7.14 NcnCIntervalColor

Fill color indices for each contour interval.

7.7.15 NcnCLine

Array of line attributes for each contour line. If an intervals
line attributes are not set then not contour line will be drawn.

NcnCLineColor
NcnCLine Dash Pate rn
NcnCLineThickness
NcnCLineSmooth

NcnCLineDashLength
NcnCLineLabelStyle

7.7.16 NcnCLineLabels

Array of labels used to annotate each contour line. If label
resources are not set then no labels are drawn for that contour
line.

NcnCLineLabelText
NcnCLineLabelFont
NcnCLineLabelFontSize
NcnCLineLabelFontThickness

NcnCLineLabelFontAspect
NcnCLineLabelFontColor

7.7.17 NcnNumCLines

Total number of contour lines.

7.7.18 NcnInfoLabelText

Informative label and associated attributes.

NCAR Interactive Functional Specification 155

DetailedResourceDescriptions

NcnlnfoLabelFont
NcnlnfoLabelFontColor
NcnlnfoLabelFontSize
NcnlnfoLabelFontThickness

NcnlnfoLabelFontAspect
NcnlnfoLabelTextJust
NcnlnfoLabelTextPosX
NcnlnfoLabelTextPosY

7.7.19 NcnHighLow

Turns on and of High/Low labels.

7.7.20 NcnHighText

Sets a string to be printed at every high point.

NcnHighText
NcnHighFont
NcnHighFontColor
NcnHighFontSize
NcnHighFontThickness
NcnHighFontAspect

7.7.21 NcnLowText

Sets a string to be printed at every low point.

NcnkowFont
NcnLowFontColor
NcnLowFontSize
NcnLowFontThickness

NcnLowFontAspect

7.7.22 NcnMissingValue

No contours will be drawn

7.7.23 NcnHLBox

Turns high low label boxs off or on.

NcnHLBoxWidth

NcnHLBoxHeight

156 NCAR INTERACTIVE Functional Specification

VECTOR

NcnHLBoxLineThickness
NcnHLBoxLineColor
NcnHLBoxLineDashPattern

7.8 VECTOR

To Be Added.

7.9 STREAMLINE

To Be Added.

7.10 Common 3D Resources

These resources are common between the iso-surface and the

surface utilities. Setting these resources precludes the setting

of the corresponding surface and iso-surface resources unless
the user wants them to differ between the two utilities.

7.10.1

7.10.2

7.10.3

N3dEyePoint

This attribute specifies the x,y,z coordinate position of the

viewer's eye. This value should be outside the data space.

N3dViewCenter

This attribute specifies the coordinate position looked at. It

should be inside the data space.

N3dContLines

This sets the contant lines to be used for drawing a surface.
Valid values are:

NCAR Interactive Functional Specification 157

Detailed Resource Descriptions

U - draw lines of constant u

V - draw lines of constant v

W - draw lines of constant w

U and V - draw lines of constant u and v

U and W - draw lines of constant u and w

V and W - draw lines of constant v and w

U and V and W - draw lines of constant u and v and w

7.10.4 N3dSkirt

This attribute specifies whether or not to draw a skirt or wall

along the edges of a surface where it intersects the data

boundary.

It can be either "on" or "off'

7.10.5 N3dContourHigh, N3dContourLow, N3dContourInterval

These parameters set the high and low values in which
constant lines are generated, the N3dContourInterval sets the

interval between the high and low values at which the lines are
calculated.

7.11 SURFACE

Surface plots are used to create a three-dimensional

perspective of two-dimensional data with hidden lines
removed. The surface, Z, is a function of two variables, X and
Y.

For example, a three-dimensional surface could be created
from a two-dimensional array of data where the first array

dimension is the X position and the second dimension is the Y

158 NCAR INTERACTIVE Functional Specification

SURFACE

position in a Cartesian grid. The value (Z) of each element in

the array defines the height of the surface for each X and Y
coordinate.

The following parameters define the characteristics of the
surface such as rotation, surface representation, and viewing

angle.

7.11.1 NsrArrayDims

This parameter specifies the X, Y dimensions of the data. This

is an integer array of size 2.

7.11.2 NsrArray

This parameter is the data array which is dimensioned by

NsrArrayDims.

7.11.3 NsrArrayRange

This parameter specifies the valid array range. It is an integer
array of size 4. The first 2 array locations hold the lower left

hand comer array indices, and the second 2 hold the array

indices of the back right corner.

This allows the user to subsample data rather than use the
entire data set.

The default value is the entire data set i.e. the array is 0,0,

xdim- 1, ydim- 1.

7.11.4 NsrArrayXstride, NsrArrayYstride

In a 2 dimensional data set it may be desirable to sample every

other point or every third or fifth point for example. These

parameters allow the user to specify the stride factor in each
dimension.

NCAR Interactive Functional Specification 159

DetailedResourceDescriptions

Setting NsrufArrayXstride to 3 for example, forces this high

level utility to sample every third data point in a the X
direction.

The default is to sample every data point, therefore the

parameters are initially set to 1.

By sampling down the data, the computations will run faster

but your surface will be more coarse. This method of data

downsizing is effective for preliminary viewing of data. Later,
when exact viewing parameters are set, the user may want to
view the entire data set.

7.11.5 NsrXcoord NsrYcoord

These are singly dimensioned arrays which contain the X and

Y coordinates, respectively, of the points in a surface

approximation. The units are in the same units as the data

array.

These coordinate arrays allow the user to scale the data.

The size of the X coordinate array is the X dimension of the

data array, and the size of the Y coordinate array is the Y
dimension of the data array.

7.11.6 NsrEyepoint

This parameter specifies the xyz coordinate which determines

the position of the viewers eye,.

This coordinate should be outside the data space.

7.11.7 NsrViewCenter

This parameter specifies the xyz coordinate which determines

the point looked at by the eye. This coordinate should be inside

the data space.

160 NCAR INTERACTIVE Functional Specification

i

SURFACE

The distance between the eye and the point looked at should be

5 to 10 times the size of the data space block.

7.11.8NsrStereo

This parameter is a flag to indicate if stereo pairs should be
drawn.

A value of "on" indicates that the utility should draw stereo
images, and a value of "off' indicates that it should not. "off'
is the default.

When "off' is the flag value, the utility draws one image, when

the flag is on, two images are drawn and are affected by the

NsrStereoAngle parameter.

7.11.9 NsrStereoAngle

This parameter determines the relative angle between the eyes

for stereo images. A value of 1.0 (the default) produces the

standard separation. A negative angle reverses the images.

7.11.10NsrStereoType

This parameter determines how stereo images are placed on
frames. The parameter may have 3 values: "Alternate",
"Blank", or "Same".

"Altemate" specifies that the stereo images should be put on
separate frames, but slightly offset.

"Blank" specifies that a blank flame should be created between

the two stereo images. This is the default.

"Same" specifies that both stereo images should appear on the
same frame.

NCAR Interactive Functional Specification 161

i T

Detailed Resource Descriptions

7.11.11NsrPlotDirection

This parameter determines which plotting direction

corresponds to the positive Z coordinates. This parameter may

be either "Cine" or "Comic". "Cine" is the default. Changing

these parameters will rotate the surface 90 degrees.

"Cine" specifies that +Z is in the vertical plotting direction.

"Comic" specifies that +Z is in the horizontal plotting

directions.

7.11.12NsrConstLines

With this resource, users control the way the lines which

represent the surface are drawn. The user can choose lines of

constant U, V, W, or any combination thereof.

"U" Draw Lines of constant U.

"V" Draw Lines of constant V.

"W" Draw Lines of constant W.

"UV" Draw Lines of constant U and V.

"UW" Draw Lines of constant U and W.

"VW" Draw Lines of constant V and W.

"UVW" Draw Lines of constant U, V, and W.

"UV" is the default value.

7.11.13NsrDrSide

This parameter specifies which sides of a surface to draw.

"Upper" Draw upper side of surface.

"Both" Draw both sides.

162 NCAR INTERACTIVE Functional Specification

SURFACE

"Lower" Draw lower side.

"Both" Default value.

7.11.14NsrSkirt

This flag specifies whether or not to draw a skirt around the

object. A skirt is a wall which extends from the edge of the

surface to a level defined by NsrSkirtBottom.

"on" Draw a skirt. "off" Do not draw a skirt.

"off" is the default value.

7.11.15NsrSkirtBottom

This is a real value which sets the level at which the bottom of

a skirt (if NsrSkirt is on") terminates. It can be thought of as

the height of the skirt.

0. is the default value

7.11.16NsrNLevels

This parameter determines the number of levels of constant Z.

This must be an integer value greater than or equal to 0 and

less than or equal to 40. The default is 6. The more levels you
choose, the more dense the surface will be.

Note that you need to set NsrConstLines to include "W" so
that levels of constant Z are drawn.

7.11.17NsrStereoTheta

This parameter sets the angle in radians between eyes for

stereo pairs.

.02 is the default value.

NCAR Interactive Functional Specification 163

i ii = ii I

Detailed Resource Descriptions

7.11.18NsrContourLow NsrContourHigh NsrContourInterval

These parameters determine the highest and lowest levels of
constant Z and the increment between them. 0. is the default

value for all. These parameters allow the user to slice off part

of the image in the Z direction and control the number of Z
level contours.

If any of these parameters are 0., a nice value is generated

automatically.

7.11.19NsrSpvalFlag

This parameter controls the use of NsrSpval.

"off" Do not use NsrSpval.

"on" Use NsrSpval. No lines are drawn to data points in Z that

are equal to NsrSpval.

"off" is the default value.

7.11.20NsrSpval

This is the real data value used to mark special or missing data.

If NsrSpvalFlag is "on", no lines are drawn to data points in Z

that are equal to this parameter.

0. is the default value.

7.12 ISO-SURFACE

This section describes the resources which specify an iso-

surface object. These objects are created by taking a 3D

volume of data and specifying a threshold value. A polygon
surface is created which intersects values in the data which

equal the threshold value.

164 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

These surfaces or objects can then be operated upon. For

example, a user can change the objects color, position, or

lighting characteristics.

Besides iso-surfaces, this section describes the resources for

3D surfaces generated from 2D data (the z position is

determined by the data value) and volumentric objects (data

points are displayed as relative intensities where the intensity
is proportional to the data value).

The 3D functionality is broken into two utilities: NCAR

Graphics and PolyPaint.

The NCAR Graphics utility will be built upon the NCAR

Graphics ISOSRF routine which generates iso-surfaces from a

three-dimensional array.

The need to develop a programming interface to the PolyPaint

application has not been confirmed. The interface presented

here for PolyPaint is a possiblility of what the inteface may

look like should it be determined that this is a high priority.

The PolyPaint utility will be built upon MMM's PolyPaint

application which also generates iso-surfaces, but it includes

support for color shading, volumentric rendering, and index
and true color. PolyPaint also allows the user to control

lighting, viewing, and shading.

The resources for 3D surfaces are divided into three sections:

NCARGraphics iso-surface resources, common resources

between NCAR Graphics Iso-surface and PolyPaint, and

PolyPaint resources.

7.12.1 NCAR Graphics Iso-surface Resources

These resources are associated with the NCAR Graphics HLU
and not the PolyPaint application.

NCAR Interactive Functional Specification 165

DetailedResourceDescriptions

7.12.1.1 NisConstLines

This parameter is used to determine which types of iso-surface

lines to draw.

With this resource, users control the way the lines which

represent the iso-surface are drawn. The user can choose lines

of constant U, V, W, or any combination thereof.

"U" Draw Lines of constant U.

"V" Draw Lines of constant V.

"W" Draw Lines of constant W.

"UV" Draw Lines of constant U and V.

"UW" Draw Lines of constant U and W.

"VW" Draw Lines of constant V and W.

"UVW" Draw Lines of constant U, V, and W.

"UVW" is the default value.

7.12.1.2 NisVisibility

This parameter determines what data is inside and outside a

surface.

"inside" - Data values greater than the threshold are assumed

inside the surface.

"outside" - Data values less than the threshold are assumed

outside the surface.

"inside" is the default value.

7.12.2 Common Resources between NCAR Graphics Iso-surface

166 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

and PolyPaint

The following resources are shared between the NCAR

Graphics Iso-surface HLU and the PolyPaint application.

7.12.2.1 NisSurfaceData

This resource specifies the data array which defines the
surface.

7.12.2.2 NisEyepoint

This is a floating point array with one dimension of size 3, and

it holds the position of the eye in 3 space. The data is

considered to be in a box with opposite comers at (1,1,1) and

(xdim, ydim, zdim). The eye point should be outside of this

box. NCAR Graphics documentation recommends (5*xdim,

3.5*ydim, 2.0*zdim).

Since the user's array size may be different for every

application, a default value could be specified as a factor of the
maximum array indices, i.e. 5.0, 3.5, 2.0.

By changing the eyepoint, the user can adjust the angle or
position from which the iso-surface is viewed. This allows the

user to look at the object from any direction.

7.12.2.3 NisArrayDims

This parameter specifies the X, Y, and Z dimensions of the

data. This is an integer array of size 3.

7.12.2.4 NisArrayRange

This parameter specifies the valid array range. It is an integer
array of size 6. The first 3 array locations hold the front lower

left hand comer array indices and the second 3 hold the back

upper right array indices.

NCAR Interactive Functional Specification 167

DetailedResourceDescriptions

This allows the user to subsample data rather than use the
entire data set.

The default value is the entire data set i.e. the array is 0,0,0,

xdim- 1, ydim- 1, zdim- 1.

7.12.2.5 NisArrayXstride NisArrayYstride NisArrayZstride

In a 3 dimensional data set it may be desirable to sample every

other point or every third or fifth point for example. These
parameters allow the user to specify the stride factor in each
dimension.

Setting NisArrayXstride to 3 for example, forces this high

level utility to sample every third data point in a the X
direction.

The default is to sample every data point, therefore the

parameters are initially set to 1.

By sampling down the data, the computations will run faster

but your iso-surface will be more coarse. This method of data
downsizing is effective for preliminary viewing of data. Later,

when exact viewing parameters are set, the user may want to
view the entire data set.

7.12.2.6 NisAxes

This is an integer parameter to control whether or not the axes

should be displayed.

"on" - Draw Axes "off" - Do Not Draw Axes

"on" - default value

7.12.2.7 NisThreshold

The parameter specifies the surfacer threshold. This value
defines the iso-surface. A surface is drawn through points in a

volume which equal this value.

168 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

The range must be a valid data value.

?????Min, or Max, Average, none - default value

7.12.3 PolyPaint Resources

The following resources or parameters and their definitions are

taken from the Version 3.0 PolyPaint User Manual. These

resources apply to the a proposed PolyPaint API that is

consistent with the NCAR Graphics HLU concept.

Some of the resources apply only to index or true color
settings. Index color uses a table of color values to determine

the color of each point of an object. Normally a table has 256
entries. User's are allowed to divide a color table into several

(up to 19) partitions. In this way, a separate partition can be

used to color each object in a scene.

True color is different in that rgb values are used for each point
of an object rather than an index into a color table.

How the final image is displayed depends on the color system

of the display device. If the device is a true color device, it can

display any color at any point on the screen. If the device is an
index color device, there is a color table for that device, and it

is used to display the image.

See appendix B of the PolyPaint User Manual Version 3.0 for a

more complete description of the difference between index and
true color.

7.12.3.1 NisAliasExpon

This parameter specifies the alias exponent. The floating point

value sets the nonlinear color mixing exponent of anti-aliasing.
It is a real value between O. and 1.

.75 default value

NCAR Interactive Functional Specification 169

DetailedResourceDescriptions

The value will depend on the monitor used to display
antialiased wire-frames. A value of 1 is linear.

7.12.3.2 NisAmbient

This parameter specifies the ambient light level intensity.

This can be either an intensity for index color or rgb values for
true color.

0. or 0,0,0 are the default values.

7.12.3.3 NisXScale NisYScale NisZScale

These parameters specify the scale factors for each axis, and

they allow the user to stretch and shrink an object in three
directions.

1. is default value for each direction.

7.12.3.4 NisObjectBackIntensity

This parameter specifies an object's intensity as seen through a

transparent object.

The parameter range is a real value between 0 and 1.

0. is the default value.

7.12.3.5 NisObjectFrontIntensity

This parameter specifies an object's transparency intensity.
When this number is low and NisObjectBackIntensity is close

to 1, the object looks very transparent; when this number is

close to 1 and NisObjectBackIntensity is small, the object

looks nearly opaque. This does not apply to thin-surface

transparency.

The parameter range is a real value between 0 and 1.

1.0 is the default value.

170 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

7.12.3.6 NisPerpAxis

This parameters sets the axis which is perpendicular to the

base plane. The base plane is a flat, rectangular object created

with the position and orientation selected by a NisPerpAxis

and NisBasePlaneLevel. The value may be the X, Y, or Z axes.

"Z" is the default value.

7.12.3.7 NisBasePlaneLevel

This parameter sets the level where the base plane is

calculated. The level is <= nx, ny, or nz, depending on the
perpendicular axis.

1 is the default value. ?

7.12.3.8 NisRedLimitMin NisRedLimitMax NisGreenLimitMin

NisGreenLimitMax NisBlueLimitMin NisBlueLimitMax

These parameters set the range of brightness associated with

the red, green, and blue raster-mapping arrays, respectively.

Min and Max real values between O. and 1.

Min=O., Max= 1. are the default values

7.12.3.9 NisViewCenter

This parameter specifies the xyz coordinates of an object's

center. This is the position where the imaginary eye is looking.

Its units are the same as the eye position.

.5,.5,.5 are the default coordinates.

7.12.3.10 NisPartitionNumber

This parameter specifies the number of color partitions a color

table should be divided into. The more partitions a table is

divided into, the fewer the number of colors in each partition.

NCAR Interactive Functional Specification 171

DetailedResourceDescriptions

This means that the dark to light difference from one index to

another is greater.

This resource applies to index color only.

This is an integer value between 1 and 19. The default is 1.

7.12.3.11 NisColorSet

This parameter sets the color of the current partition when

using index color or the surface color of the next object

rendered if using true color.

If you are using index color, NisColorSet is a one dimensional
array of size 6. The first 3 array locations hold the low values

for red, green, and blue, and the last 3 locations hold the

respective high values.

These values are real numbers between 0. and 1.0.,0.,0., 1., 1.,

and 1. are the default values.

If you are using true color, NisColorSet is a one dimensional

array of size 3. The first location holds a real number which

specifies the amount of red in the object's surface color. The
next two array locations hold the specifications for the amount

of green and blue respectively.

These values are also real numbers between 0. and 1.1., 1.,

and 1. are the default values.

7.12.3.12 NisCoordTrans

This parameter specifies the coordinate transformation. It can

be either: cartesian, cylindrical, spherical, or auxiliary

Cartesian is the default value

7.12.3.13 NisCrossSectColorHigh NisCrossSectColorLow

172 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

NisCrossSectColorInterval

These resource is used to set parameters for cross section

coloring for true color. Colors are assigned to a color ramp
with the high end of the ramp assigned to

NisCrossSectColorHigh and the low end assigned to

NisCrossSectColorLow. If NisCrossSectColorInterval is 0, the

coloring will be continuous, otherwise, constant colors will be

assigned to ranges of width NisCrossSectColorInterval.

The defaults for the above three parameters are 0., 0., and 0..

7.12.3.14 NisCrossPartition

This parameter sets the color partition that the cross section

will use for index color. It is an integer between 1 and the

number of partitions available.

1 is the default value.

7.12.3.15 NisVolCutPlane

This parameter sets the level whereby values greater than the
level are displayed if NisVolHigher is on, and values less than
level otherwise.

0. is the default value

7.12.3.16 NisVolHigher

This is a toggle flag which is used in conjunction with the
NisCutPlane parameter to determine what values of a surface

to display.

The flag may be "on" or "off".

"On" is the default.

NCAR Interactive Functional Specification 173

DetailedResourceDescriptions

7.12.3.17 NisCuttingPlane

This integer parameter specifies the cutting plane in a data
volume. The value specified determines the level at which to

create a cutting plane.

The range is 1 to nx, ny, or nz depending on the cutting plane
orientation.

7.12.3.18 NisAxisCutPlane

This parameter specifies the axis which is perpendicular to the

cutting plane. The parameter may be X, Y, or Z corresponding

to the X, Y, or Z axes respectively.

Z is the default value.

7.12.3.19 NisShadowDarkness

This parameter sets the darkness of the shadow which falls on

objects. It is a real value between 0. and 1.

0. is the default value.

7.12.3.20 NisSpecularReflectionExponent

This real parameter determines the brightness of specular

highlights. The larger the value the shinier the surface. Large

exponents create little, bright highlights while small exponents

create larger, more dispersed highlights.

5.0 is the default value.

7.12.3.21 NisSpecularIntensity

This parameter determines the intensity of specular highlights

if using indexed color or the color if using true color.

It is a real value between 0. and 1. for indexed color, otherwise

it is an RGB triple between 0. and 1. for true color.

174 NCAR INTERACTIVE Functional Specification

iii

ISO-SURFACE

0. (index) or 0.,0.,0. (true) are the default values.

7.12.3.22 NisThinSurfaceTransparency

This real parameter sets the value of the exponent for thin-

surface transparency. The value of 0. is opaque.

1. is the default value.

7.12.3.23 NisTransTable

This parameter sets the transparency table for a current object,

and is used to determine which objects are transparent to
which other objects.

This is a two dimensional array where the first dimension

contains an object number and the second dimension contains

a toggle flag. 1 signifies that the current object is transparent to

the object specified by object number. A 0 signifies that the

current object is not transparent to the object specified by
object number.

The default toggle flag is 0.

7.12.3.24 NisGeoTransformation

This parameter sets the coordinate transformation to use for

geographical data.

Possible values are: Cartesian, wrap around globe, Equatorial

Mercator Projection, or Sinusoidal projection

Cartesian is the default value.

7.12.3.25 NisHazeColor

This parameter specifies the haze color (true color) or

brightness (indexed color) which the image fades to depending
on distance from the eye.

NCAR Interactive Functional Specification 175

DetailedResourceDescriptions

If toggle autohaze is on, the background color is used as the
haze color.

This is a singIe real value between 0. and 1. if indexed color is
used. Otherwise, it is an RGB triple, between 0. and 1.

0 (indexed) or 0.,0.,0. (true) are the default values

7.12.3.26 NisInnerTransExponent NisOuterTransExponent

These two parameters define the inner and outer exponents
used for the transparency level in nested shells. This allows the

user to specify the relative intensities of the innermost and

outermost shells. The exponents used for trnasparent shells

vary linearly between the inner and outer exponents.

The parameters' ranges are real values between 0. and 1.

1. is the default.

7.12.3.27 NisLightNumber

This parameter specifies the number of lights in the scene. It is
an integer value which is less than or equal to the maximum

number of lights allowed.

1 is the default.

7.12.3.28 NisLightIntensity

This parameter sets the intensity for diffuse lighting of the

current light source for index color. Otherwise, it specifies

color of the current light source with an rgb triple.

Real value between 0. and 1. for index color RGB values

between 0. and 1. for true color

1. (index), and 1.,1.,1. (true) are the default values.

176 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

7.12.3.29 NisLightIndex

This integer parameter specifies the current light source. It is a

positive integer less than or equal to the maximum number of

lights allowed.

1 is the default value.

7.12.3.30 NisLightPosition

This parameter specifies the coordinates of the current light. It

is a one dimensional array of size three and holds the x, y, and

z coordinates respectively.

10.,10.,10 is the default position.

7.12.3.31 NisMagnification

This parameter sets the amount of object magnification. It is a
real value between 1.0 and 5.0

1.5 is the default value.

7.12.3.32 NisViewAngle

This real parameter sets the view angle for enlarging and

shrinking an object. It is a real value between 0. and 90. The

larger the value, the smaller the object will appear.

6.0 is the default value.

7.12.3.33 NisColorMidPoint

This parameter sets the midpoint value for the current color

partition. Color partitions may vary nonlinearly by specifying

the midpoint value of the partition. This is used for gamma
correction.

Valid values are real numbers from O. to 1.

NCAR Interactive Functional Specification 177

DetailedResourceDescriptions

The default is .5.

7.12.3.34 NisObjectIndex

This integer parameter specifies the current object identifier.

The identifier ranges between 1 and 10.

1 is the default value.

7.12.3.35 NisPartitionIndex

This integer parameter sets the current color partition.

1 default value

7.12.3.36 NisTransOverlapColor

This parameter specifies an identifier of a color map to use for

index color when pixels are overlapped by a transparent

object. This is useful for mixing the colors of a front and rear

object to create a realistic transparency effect.

1 is the default value.

7.12.3.37 NisRampNumber

This parameter specifies the number of color ramps for the true

color option. It is an integer between 1 and 19.

1 is the default.

7.12.3.38 NisRampColor

This is an array of 7 real values. This array defines a linear

color ramp for true color applications. The first 3 values are the

low values for red, green, and blue. The next 3 values are the

high values for red, green, and blue. The last value is the
relative minimum of color data for the ramp.

178 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

Data from the color data array whose values range between the

value specified by the relative minimum and the value of the

relative minimum in the next color segment are colored using

the linear coloring ramp.

0 is the default for each array value.

7.12.3.39 NisRampId

This parameter specifies the current data color-coding ramp.

1 is the default value

7.12.3.40 NisRotationAngle

This real parameter specifies the value of object rotation. The

range of the angle is between 0. and 180.

15. is the default value.

7.12.3.41 NisShadowPosition

This real parameter specifies the Z position of a shadow cast

onto a plane.

1.0 is the default value

7.12.3.42 NisShellLimitLow NisShellLimitHigh
NisShellLimitInterval

These real parameters define the surface and intervals of

shells. The shells are equal-valued surfaces for values ranging

from NisShellLimitLow to NisShellLimitHigh at intervals of
NisShellLimitInterval.

0., 0., 0. are the default values respectively.

NCAR Interactive Functional Specification 179

DetailedResourceDescriptions

7.12.3.43 NisVerticeLimit

This parameter specifies the maximum number of vertices a

polygon can have. It is an integer between 3 and 7.

Limiting the vertices always increases the number of polygons

and the demand for memory. For some purposes, such as

hardware rendering, it may be necessary to limit the number of

vertices per polygon.

7 is the default.

7.12.3.44 NisObjeetActive

This is a toggle parameter which determines whether or not an

object is active and will be rendered. The value may be "on" or

"off".

"off" - do not render current object. "on" - do.

"on" is the default value.

7.12.3.45 NisDataAlternate

This parameter determines whether to use the color or main

data for the cutting plane and cross section.

0 Use color data to color the cutting plane and cross section.

1 Use main data.

1 is the default value.

7.12.3.46 NisPixelAlternate

This specifies how to handle transparency. If this toggle is on,

then objects will be superimposed by alternating pixels,

otherwise the standard method will be used. Valid values are

"on" or "off".

"off" is the default.

180 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

7.12.3.47 NisAntiAlias

This parameter toggles anti aliasing for shaded wire-frames. If

it is on, the stair-stepped aliasing effect of a raster screen can

be reduced. If the wire-frames are not shaded, they cannot be
anti-aliased.

"on" is the default

7.12.3.48 NisArrayScale

This parameter toggles between scaling or not scaling the

cutting- plane coloring by the values in the cutting-plane array.

"on" use array scaling "off" do not use array scaling

"on" is the default.

7.12.3.49 NisAutoHaze

This parameter toggles auto haze calculation. It will either be

set automatically as the background color, or the user may
manually enter the haze color.

"auto" - Automatically calculate haze color in true color

"manual" - Manually set haze coloring

"auto" is the default value

7.12.3.50 NisAutoCenter

This parameter toggles how to set the center of view.

"auto" - Automatically set the center of view "manual" -

Manually set the center of view

"auto" is the default.

7.12.3.51 NisAutoScale

This parameter determines how the view angle is set.

NCAR Interactive Functional Specification 181

.-- -- i m mumul I

Detailed Resource Descriptions

"auto" - Automatically set the angle of view.

"manual" - Manually set the angle of view.

"auto" is the default.

7.12.3.52 NisSurfaceNormals

This parameter toggles between a smooth surface (surface

normals are averaged) and a faceted surface (no averaging).

"smooth" - smooth surface "faceted" - faceted surface

"smooth" is the default.

7.12.3.53 NisBackfaceCull

This parameter toggles backface culling. This determines

whether or not to render both sides of a surface. The parameter

may be "on" or "off'.

"on" - Render the backs of backward-facing polygons "off" -
Do not

"off" is the default.

7.12.3.54 NisScaleBySlice

This parameter selects the option to scale cross-section
coloring by the values in an array slice. The value may be

"yes" or "no".

"on" - Scale cross-section coloring by the values in the array
slice "off" - Do not

"off" is the default.

7.12.3.55 NisColorCoding

This parameter specifies whether or not to create and use

color-coding data when creating polygons.

182 NCAR INTERACTIVE Functional Specification

i =ll

ISO-SURFACE

"on" - Use color-coding data "off" - Do not

"off" is the default.

7.12.3.56 NisSurfaceColorData

This parameter specifies the data to use for mapping color onto
a surface. This is not a color table. This is the data used to

determine which colors to use. The size of this array should be
the same as NisSurfaceData.

7.12.3.57 NisShellTransparency

This parameter specifies whether or not to make transparent
shells different colors, according to their contour values, using

data color-coding ramps for true color, or make transparent

shells different colors by assigning them consecutive partition
numbers for index color.

"on" - Option is on

"off" - Option is off

"off" is the default

7.12.3.58 NisLightType

This parameter determines the current light's type.

"directional" - The current light source is directional only;
light comes in from an infinite distance.

"point" - The current light source is a point source at a finite

distance. The brightness of a point source decreases as the
square of the distance.

"directionaL" is the default.

7.12.3.59 NisEyeRotation

This parameter toggles the ability to rotate the eye position.

NCAR Interactive Functional Specification 183

DetailedResourceDescriptions

"on" - Rotate eye position "off" - Do not

"on" is the default.

7.12.3.60 NisLightRotation

This parameter toggles the ability to rotate the light positions.

"on" - Rotate light position "off' Do not

"on" is the default.

7.12.3.61 NisShellLow

This parameter determines whether low or high values are
assumed to be on the inside of a surface. This ultimately

determines the order of rendering.

"on" Low values are assumed to be on the inside

"off" High values are assumed to be on the inside

"off" is the default

7.12.3.62 NisShading

This parameter specifies the shading algorithm.

"phong" - Use surface-normal (Phong) interpolation

"gouraud" - Use Gouraud shading

"gouraud" is the default.

7.12.3.63 NisSmallOpaque

This parameter allows the user to make the smallest shell in

nested shells opaque or transparent.

"on" - Make the smallest shell opaque

"off" - Make the smallest shell transparent

184 NCAR INTERACTIVE Functional Specification

|l

ISO-SURFACE

"off" is the default.

7.12.3.64 NisShadowProjection

This parameter specifies how an object's shadow is projected.

"perpendicular" - Shadows are projected perpendicularly

"bylight" - Shadows are projected according to the position of
the light source

"bylight" is the default

7.12.3.65 NisCuttingPlaneColor

This parameter toggles between coloring and not coloring the
interactive cutting plane.

"on" - Color it "off" - Do not color it

"off" is the default

7.12.3.66 NisSidewallPlanks

This parameter determines how the side walls are calculated.

Side walls are the edges where a polygon intersects with the

data field edge. See the NisSkirt resource below.

"planks" - Use long, plank-shaped polygons for side walls, this

option is more efficient than "squares" but it may lead to
rendering errors. "squares" - Use square polygons for side
walls

"squares" is the default.

7.12.3.67 NisRasterScale

This parameter selects how to scale the red, green, and blue
raster data arrays for true color.

"independent" - Scale the raster data arrays independently,
scaling each array relative to its own max and min"

NCAR Interactive Functional Specification 185

T

Detailed Resource Descriptions

relative" - Scale the arrays relative the max and min for all

three arrays

"relative" is the default

7.12.3.68 NisRasterMap

This parameter selects whether or not to superimpose raster

data onto the surface of an object (true color option).

"on" - Superimpose raster data onto the surface "off' - Do not

"off" is the default

7.12.3.69 NisSelfrransparency

This parameter specifies whether or not the current object

should be transparent to itself for index color. If this parameter

is "on" any portion of the object being rendered that lies
behind is treated as a back object to the portion of the object in

front. If it is "off', any portion behind another portion is not
seen.

"on" Make the current object transparent to itself "off" - Do
not

"off" is the default.

7.12.3.70 NisWireShades

This parameter specifies whether or not to shade wire frames

according to the current lighting model.

"on" - Shade wire frames "off" - Do not

"on" is the default

7.12.3.71 NisSurfaceFaceUp

This parameter determines whether or not surfaces face up
surrounding higher values or down surrounding lower values.

186 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

"up" - Surfaces face up surrounding higher values "down" -

Surfaces face down surrounding lower values

"up" is the default.

7.12.3.72 NisLightTerminator

This parameter selects between a 90 or 180-degree terminator

for the current light source. A 180-degree terminator results in

the most realistic lighting for one light source.

90 degrees produces harsh lighting, whereas 180-degrees

provides a scattering effect similar to that of the atmosphere.

"180" degree "90" degree

"180" is the default

7.12.3.73 NisThinSurface

This parameter toggles between using or not using thin-surface

transparency.

"on" - Use thin-surface transparency "off" - Do not

"off" is the default.

7.12.3.74 NisTrueColor

This specifies whether to use true color or index color

calculations. On an 8-bit system, true color will be simulated

by using a dithering algorithm.

"true" - Use true (24-bit) color "index" - Use index (8-bit)
color

"index" is the default

NCAR Interactive Functional Specification 187

DetailedResourceDescriptions

7.12.3.75 NisVolhigher

This parameter specifies whether to display higher or lower
values than the cutoff value (NisVolCutPlane) in volumetric

rendering.

"high" - Display higher values "low" - Display lower values

"high" is the default

7.12.3.76 NisVolAlgorithm

This parameter selects the volumetric algorithm to use.

"quick" - Use the quick algorithm. This method is faster, but it

can create striped effects when the data are seen from certain

angles.

"slow" - Use the slow algorithm. This method is slower, but it
uses a random-dithering algorithm which produces better
results.

"slow" is the default

7.12.3.77 NisSkirt

This parameter specifies whether or not to build walls or

endcaps to close off 3D contour surfaces when they intersect

the edge of a data volume.

"on"- Build the walls "off" - Do not

"on" is the default

7.12.3.78 NisWireFrame

This parameter selects between wire frame or surface

rendering.

"on" - Render objects as wire frames "off" - Render objects as
surfaces

188 NCAR INTERACTIVE Functional Specification

ISO-SURFACE

"off" is the default

7.12.3.79 NisBoundingBox

This parameter controls whether or not a bounding box is

displayed around a data volume.

"on" - Turn on the bounding box "off" - Turn off the bounding
box

"off' is the default

7.12.3.80 NisImageType

This parameter specifies how to render an image. It may be an
iso-surface image, an iso-surface stereo image, a volumetric

image, or a volumetric image in stereo.

"iso" - Render an iso-surface image

"stereo-iso" - Render an iso-surface stereo image

"volume" - Render a volumetric image

"stereo-volume" - Render a volumetric image in stereo

"iso" is the default.

7.12.3.81 NisZoomFactor

This parameter specifies how much to zoom in or out on an

object.

Positive values cause an object to be rerendered larger, and
negative values cause an object to be rerendered smaller.

7.12.3.82 Nis2DAxis

This parameter specifies the axis (X, Y, or Z) perpendicualr to

the plane in which 2D contours or surfaces are generated.

NCAR Interactive Functional Specification 189

DetailedResourceDescriptions

"X" - Use the X axis

"Y" - Use the Y axis

"Z" - Use the Z axis

"Z" is the default

7.12.3.83 Nis2DContourLow Nis2DContourHigh
Nis2DContourInterval

These parameters set the limits for 2D contours. Contours are

generated from the data beginning with the value specified by

the low argument up to the value specified by the high
argument in increments specified by the interval argument.

0. is the default low value. 1. is the default high value.. 1 is the
default interval value.

7.12.3.84 Nis2DWidth

This parameter sets the width of 2D contours. The real value is
a fraction of the data interval inthe dirction of the current 2D

axis.

.3 is the default value.

7.12.3.85 Nis2DLevel

This specifies the level within the data volume at which 2D

contours or surfaces are generated.

This is an integer between 1 and nx, ny, or nz, depending on
the current 2D axis.

1 is the default.

7.12.3.86 Nis2DPlotLevel

This sets the level at which a 2D surface will be plotted.

190 NCAR INTERACTIVE Functional Specification

Annotation

It is an integer between 1 and nz.

1.0 is the default.

7.12.3.87 Nis2DSurfaceScale

This real parameter specifies the amount which data values are

scaled in a 2D surface plot. In 2D plots, a polygon set is

created from two-dimensional data in which z positions
depend on data values.

1.0 is the default.

7.13 Annotation

7.13.1 LEGENDS

This section describes the resources which specify a legend
object. Legends, like label bars (described below) are used as a

key to accompany a plot. Legends are very similar to label

bars, but they differ in that they define line representations

(dash patterns) and symbols rather than fill patterns. Legends

can be displayed vertically or horizontally, and labels may
appear on any side.

7.13.1.1 NlgLegend

Turns on and of legend.

7.13.1.2 NlgOrientation

This integer resource specifies whether to create a vertical or

horizontal row/column of legend symbols/lines. A value of 0
specifies horizontal and non-O vertical. The default value is O.

7.13.1.3 NlgSymbolOrientation

This integer resource specifies whether to create a vertical or

horizontal symbol or dash-line pattern. A value of 0 specifies

NCAR Interactive Functional Specification 191

l i

Detailed Resource Descriptions

horizontal and non-O vertical. This resource is different from

NiLegendOrientation in that it specifies the orientation of the

individual symbols rather than the orientation relative to

another symbol.

The default value is 0.

7.13.1.4 Nlgx Nlgy Nlgwidth Nlgheight

These real resources define the position coordinates of a

rectangular area in which the legend, including its labels, are

displayed. They are the X coordinates of the left and right

edges of the area and the Y coordinates of the top and bottom

edges respectively.

These real values are between 0. and 1. inclusive and represent

a fraction of the plotter frame.

7.13.1.5 NlgElementType NlgNElements

Each element in the legend is either a dashed line or a symbol.

This resource sets the type and NlgNelements keeps track of

the total number of elements in the legend. These resources

can be set automatically by the HLU. For example, an X-Yplot

with mutiple curves fills in the legend with the dash patterns,

symbols and curve labels it uses.

7.13.1.6 NlgIndex

This specifies the index of the current legend element when

using an indexed scheme for defining legends. Legend

attributes will only apply to the element selected by NlgIndex.

The default value is 1, the first element.

7.13.1.7 NlgDashPattern

Sets the dash pattern for elements that are line segments in the

NlgElementType array.

192 NCAR INTERACTIVE Functional Specification

iw

Annotation

7.13.1.8

NlgLineColor
NIgLineThickness
NIgDashLength

NlgSymbol

For elements that are symbols this sets the symbol attributes.

NIgSymbolScaleFactor
NIgSymbolColor
NIgSymbolFillPattern

The resource NlgIndex can be used to index individual
symbols.

7.13.1.9 NlgLabelText

This is an array of strings which holds the labels which appear

as annotation on the legend. The array size is NlgNsymbols,

and there can be one label per symbol.

The labels have the standard "subresources" which are defined

for generic text:

NIgLabelFont
NIgLabelFontSize
NIgLabeIFontAspect
NlgLabelFontThickness
NIgLabelFontColor
NIgLabelTextJust
NIgLabelTextAngle

The resource NlgIndex can be used to index individual label
text strings.

7.13.1.10 NlgLabelPosition

This integer resource specifies where the label sits with respect
to its corresponding symbol.

0 symbol is unlabeled 1 labels are below a horizontal symbol
or to the right of a vertical symbol

2 " "above" "left " "

NCAR Interactive Functional Specification 193

11

Detailed Resource Descriptions

3 labels are repeated on both sides of a symbol

7.13.1.11 NlgTitleText

This is the legend's title. This resource will have
"subresources" such as those used to define generic text:

NIg'fitleFont
NIgTitleFontSize
NIgTitleFontAspect
NIgTitleFontThickness
NIgTitleFontColor
NIgTitleTextJust
NlgTitleXOffset
NIgTitleYOffset
NIgTitleTextAngle

The default value is no title.

7.13.1.12 NlgDrawBorder

This resource is an integer flag which specifies whether or not
a box should be drawn around the legend. A value of 0

specifies that a box should not be drawn, and a value not equal

to 0 specifies that one should. 0 is the default value.

This resource will have "subresources" such as those used to

define the generic line:

NIgBorderLineThickness
NIgBorderDashPattern
NlgBorderDashLength
NIgBorderLineColor
NIgBorderLineSmooth

7.13.2 LABELBARS

This section describes the resources which specify a label bar

object. Label bars are used as a key to accompany a plot. They
consist of a rectangular labeled bar which can be colored and

filled solid or with patterned lines. Labelbars are different from

Legends in that Legends define symbols and line

representations, whereas Label bars define fill patterns.

194 NCAR INTERACTIVE Functional Specification

Annotation

A labelbar may be displayed vertically or horizontally and

labels may appear on any side.

7.13.2.1 NlbLabelBar

Turns label bar on and off.

7.13.3 NlbOrientation

This integer resource specifies whether to create a vertical or

horizontal bar. A value of 0 specifies horizontal and non-0
vertical. The default value is 0.

7.13.4 Nlbx Nlby Nlbwidth Nlbheight

These real resources define the position coordinates of a

rectangular area in which the bar and its labels are displayed.

They are the X coordinates of the top left edges of the area and
the width and height of that area.

These real values are between 0. and 1. inclusive and represent

a fraction of the plotter frame.

7.13.5 NlbNboxes

This is an integer resource which specifies the number or

partitions or boxes into which the label bar is divided. All the

boxes are of equal size and are filled with a pattern described

below. Each box may have a unique color, pattern, and label.

The resource NlbBoxIndex can be used to index individual fill

boxes.

7.13.6 NlbAreaWidth NlbAreaHeight

These resources specify what fraction of the label bar area is
filled with a color or pattern. The unfilled area can be used for
labels.

NCAR Interactive Functional Specification 195

Detailed Resource Descriptions

7.13.7

7.13.8

7.13.9

The range for these real resources is between 0. and 1.
inclusive. The resources specify the fraction of the width and

the height of the box, respectively.

NlbFillPattern

This integer resource specifies the pattern in the filled portion
of a box. The fill pattern is referenced from the global

fillpattern map.

NlbBoxColor

This specifies an integer array of indices into the color map
described below. The size of the array is NlbNboxes. This

array is used to determine the color of the box (solid color or

line color depending on the fill pattern).

NlbLabelText

This is an array of strings which holds the labels which appear
as annotation on the label bar. The array should be 1 of 3 sizes

depending on how the user wants the labels to align with the
boxes (below). If the alignment flag is 0, then the size is the
same as the number of boxes in the bar. If the alignment flag is

1, the array size is one less than the number of boxes, and if the

alignment flag is 2, then the size is one greater than the number
of boxes.

The labels have the standard "subresources" which are defined

for generic text:

Nlbkabelgont
NIbLabelFontSize

NIbLabelFontAspect
NIbLabelFontThickness
NIbLabelFontColor
NIbLabelTextJust
NIbLabelXOffset
NIbLabelYOffset
NIbLabelTextAngle

196 NCAR INTERACTIVE Functional Specification

Annotation

The resource NlbBoxIndex can be used to index* individual

text strings.

7.13.10NlbAlignment

This integer resource specifies how to align the labels to the
boxes.

0 Align one label per box

1 Align labels with division between boxes

2 Align first label with the beginning of the bar, the last label
with the end of the bar, and the rest of the labels to the
divisions between the boxes.

*note that the label array (above) must be a different size in
each case.

7.13.11NlbLabelPosition

This integer resource specifies where the label sits with respect
to the box.

0 Bar is unlabeled

1 labels are below a horizontal bar or to the right of a vertical
bar

2" "above" "left" "

3 labels are repeated on both sides of a bar

7.13.12NlbBoxLineColor

The above resources determine the color of the label box and

the labels respectively. Their values must be an integer color
index greater than or equal to 0. The index maps into the color
table described below.

NCAR Interactive Functional Specification 197

i

Detailed Resource Descriptions

NIbBoxLineThickness
NIbBoxLineDashPattern

NIbBoxLineDashLength

7.13.13NlbTitleText

This is the label bar's title. This resource will have

"subresources" such as those used to define generic text:

NIbTitleFont
NlbrTitleFontSize

NIb'l'itleFontAspect
NIbTitleFontThickness
NIbTitleFontColor
NIbTitleTextJust
NIbTitleXOffset
NIbTifleYOffset

NlbTitleTextAngle

The default value is no title.

7.13.14NlbDrawPerim

This resource is an integer flag which specifies whether or not
a box should be drawn around the labels and color bar. A value

of 0 specifies that a box should not be drawn, and a value not

equal to 0 specifies that one should. 0 is the default value.

This resource will have "subresources" such as those used to

define generic line:

NlbPerimkineThickness
NIbPerimDashPattern

NIbPerimDashLength
NIbPerimLineColor

198 NCAR INTERACTIVE Functional Specification

SECTION 8 GLOSSARY

1D:

2D:

3D:

Annotation:

API:

Control Panel:

Color Map:

Class of plot styles where is drawn by a line or symbol. Data is

one dimensional array.

Class of plot styles where data points are in grid format. Data

is a two dimensional cartesian grid.

Class of plot where data is defined with three spacial

coordinates. Data is represented either as a three dimensional

cartesian grid or random 3D points.

Any marking, line, text or fill area not belonging to a graph.

Application Programmers Interface.

A window that is displayed for the purpose of entering plot

specifications graphically.

Array of Red, Green and Blue values. Used to specify colors

used by a given instantiation of a Plot Style.

NCAR Interactive Functional Specification 199

ii|| ill ill

GLOSSARY

Coordinate Variable:

An NCL variable that has the same name and size as a

dimension. This variable contains the coordinates for that

dimension. For example, a coordinate variable for the

dimension "longitude" contains a value in degrees longitude
for each index in the dimension.

Coordinate Space:

Made up of all of the ranges of the coordinate variables of a
varaible. The coordinate space for a lattitude by longitude grid
over the whole world is [90..-90] x [180..- 180]. This means

that all data points of the variable are in this space. See Index

Space.

DSMW:

Data Selection and Manipulation Window.

Data Sequence:

Input data as selected from the DSMW. The data is organized

into spacial dimensions and timesteps. Each spacial dimension

represents an axis on the output plot. The timesteps are other
dimensions which are stepped through individually in a

sequence. The Data Sequence describes how to step through

the input data, in what order and over what ranges.

Device Independent Coordinates:

Coordinates of the Output Frame. They run from 0,0 in the

upper left corner of the Output Frame to 1,1 at the lower right

corner of the Output Frame

Fill Pattern:

Pattern which fills areas. Contours and other color regions can

be filled with a pattern. Rather than just a color.

200 NCAR INTERACTIVE Functional Specification

Font:

Font Size:

Frame:

Graph:

Graph Extent:

High Level Utility:

Index Space:

Labels:

Text style.

Relative Size of font. Usually specified as percentage of
Maximum Viewport Range.

See Output Frame.

Data plotted in a given plot style with associated tick marks,
color bars and labels.

Bounding box in Device independent coordinates the contains

the entire graph.

API for creating a Graph in a certain Plot Style.

This is related to Coordinate Space. Index Space is the integer
index space defined by all of the dimensions of a variable. If a
variable has 5 elements in one dimension and 6 in a second

dimension he index space is 5x6. All data points lie with in

these coordinates. Every variable has an index space.

Any textual labeling belonging to a graph. (note. does not
include annotation)

NCAR Interactive Functional Specification 201

i

GLOSSARY

Label Bar: '

Bar containing Colors or Fill Patterns with Labels showing

how color or Fill Patterns are mapped to data.

Layout and Display Screen:

Line Thickness:

Main Title:

For the GUI version of NI this is the area where the user can

interactive specify the layout of the Output Frame. The user

can size and position the plot viewports. When the Output

Frame is rendered this area of the GUI becomes the Display
Screen.

Relative thickness of a drawn line. Usually specified as

percentage of Maximum Viewport Range.

Main Title for plot appearing above or below Viewport.

Maximum Viewport Range:

Largest of X and Y edges of Viewport.

NCL:

NCAR Command Language.

NCL Data File Record:

The main composite data type of the NCL language. It

epresents one netCDF file of one or more variables. Each
variable can have zero or more attributes associated with it.

NCL Variables:

Multidimensional variables in float, double, short, long or

character data types.

202 NCAR INTERACTIVE Functional Specification

Output Frame:

Plot:

Plot Border:

Plot Parameters:

Plot Resources:

Plot Specific Menu:

Plot Style:

Screen Coordinates:

Spacial Dimension:

Window in which one or more graphs are plotted.

The visual representation of data in a given Plot Style.

Border drawn around the viewport. The Tick Marks extend

from the plot border.

Another term for Plot Resources

Piece of information used to configure the output of a high

level utility.

Each plot style has a unique set of menu for graphically

specifying the visualization.

Technique of visualization. XYPlot, Contour, Vector, Stream
Line, Surface, Iso-Surface, CoPlot, 3D volume, etc...

Device Dependent coordinates for pixels on the screen.

Part of a data sequence. This is a dimension that is tied to an

axis of the plot.

NCAR Interactive Functional Specification 203

GLOSSARY

Static Dimension:

Tick Mark:

Timestep:

Timestep Dimension:

Top Level Menu:

User Coordinates:

Variable Attributes:

Viewport:

Part of a data sequence. It is a dimension that does not change.

Small line, drawn from the Plot Frame inward or outward, that

marks a data value. Tick Mark are usually spaced at regular

intervals along the Plot Frame.

See Timestep Dimension.

Part of a data sequence. This dimension is stepped through n

some user specified fashion. Each step represents a new output
frame.

Main menu for GUI of NI.

World Coordinates.

Descriptive information about the variable. Often the units of

the variable, the range of the variable what values are missing
values.

The portion of the output frame in which data is plotted. One

or viewports can be specified for each output frame. An output

frame with more than one viewport contains more than one

graph.

204 NCAR INTERACTIVE Functional Specification

Window:

Window Coordinates:

World Coordinates:

X-axis Title:

Y-axis Title:

Anti-aliasing:

Backface Culling:

Color Partition:

Area of screen enclosing the Output Frame.

These are the coordinates of the window with respect to Screen
Coordinates.

Coordinates in data units. For 2D World Coordinates map onto
the entire range of the Viewport. For 3D World Coordinates

define a cube which is then projected on to the viewport.

Title for X-axis of ld and 2d plots. Appears on top or bottom
of viewport.

Title for Y-axis of 1d and 2d plots. Appears on left or right of
viewport.

A method for reducing the jagged appearance of lines.

This is an efficiency method which eliminates the processing

of rear parts (polygons) of an object which are obstructed by

the forward parts of an object. This effectively reduces the size
of the final geometry.

When using index color, color maps (usually with 256 entries)

are used to color points on the screen. These color maps can be

NCAR Interactive Functional Specification 205

GLOSSARY

Color Ramp:

Endcaps:

Index Color:

Light Terminators:

Nested Shells:

divided into separated sections or partitions so that different

objects can in effect have separate color maps. The more

partitions a color map has, the less smooth the shading
becomes.

This is the term used to describe a color table for true color

systems. A color ramp is defined by a low red, green, and blue

value; and a high red, green, and blue value. A linear color
ramp is calculated between these values.

See side walls.

Index coloring method uses a lookup table to determine the

color of a point. Usually these tables contain 256 entries/
colors.

These are specified in degrees and can currently be either 90 or

180. These parameters determine at what angle the light has

zero intensity. I.e. light terminates at either 90 or 180 degrees
from the line of light, where the line is defined by a light's

direction and its position. 90 degrees provides harsh lighting

whereas 180 degrees provides a scattering effect similar to that

of the atmosphere.

Sets of iso-surfaces which enclose one another. Nested shells

are defined by minimum, maximum, and interval values. The
minimum is the threshold for the inner-most shell, the

maximum is the threshold for the outer-most shell, and the

interval determines the spacing between shells.

206 NCAR INTERACTIVE Functional Specification

Object and Object Identifier:

Objects are surfaces generated and displayed by PolyPaint.

PolyPaint allows 10 objects to exist, each with a unique integer
identifier.

Side Walls:

These are surfaces which can be turned on or off. These

surfaces delineate the boundary of an iso-surface with the edge

of a data volume. Also known as endcaps.

Specular Highlights:

Small areas of bright light which make an object look shiny.

True color:

The true coloring method stores the red, green, and blue values

of each point on the screen in memory, where each point may
take on a different color.

View Angle:

The angle which determines how narrow or broad the

background appears in relation to the object being viewed. A

small view angle specifies that the background is a small part

of the displayed image, where as a large view angle includes a

large portion of the background in a scene. Therefore, reducing

the view angle effectively enlarges the image for a fixed size

display window.

Volumetric Rendering:

This style of rendering displays points in a volume of data as

relative intensities. The intensity of each point of data is

proportional to the value of the data at that point.

NCAR Interactive Functional Specification 207

GLOSSARY

208 NCAR INTERACTIVE Functional Specification

i i

BASIC SYMBOLS

SECTION 9 NCL SYNTAX

9.1 BASIC SYMBOLS

<basic_symbol> ::= <identifier> I <denotation> I <delimiter>

<identifier> ::- letter ((letter I digit)* ['_'] (letter I digit))*

I letter ((letter I digit)* ['_'] (letter I digit))* '.' letter

((letter [digit)* ['_'] (letter I digit))*

I letter ((letter I digit)* ['_'] (letter I digit))* '@, letter

((letter I digit)* ['_'] (Ietter I digit))*

I letter ((letter I digit)* ['_'] (letter I digit))* '.'

((letter I digit)* ['_'] (letter I digit))*

((letter I digit)* ['_'] (letter I digit))*

I letter ((letter I digit)* ['_'] (letter I digit))* '.'

((letter I digit)* ['_'] (letter I digit))*

((letter I digit)* ['_'] (letter I digit))*

I letter ((letter I digit)* ['_'] (letter I digit))* '.'

((letter I digit)* ['_'] (letter I digit))*

((letter I digit)* ['_'] (letter I digit))*

letter

' @' letter

letter

' !' letter

letter

'&' letter

<letter> ":= 'A'-'Z' I 'a'-'z'

<digit> ::= '0' - '9'

<denotation> ::= <integer> I <real> I <string> I <array>

<integer> ::= <digit>+

<real> ::= <digit>+ '.' <digit>* I <digit>* '.' <digit>+

I <real>'e' ['+' I "']<integer>

<string> ":= <anychar>

<array> ::= ' [' <row_list> ']'

<row_list> ::= <row> I <row> ';' <row_list>

<row> ::= '[' (<expression>)(',' (<expression>))* ']'

<delimeter> ::= <special> I <keyword>

<special> ::= '^' I '*' I '#' I '/' I '.' I '+' I '-' I '<' I '>' I '='

NCAR Interactive Functional Specification 209

i

NCL SYNTAX

i ',' l ')' I '(' I '[' I ']' l

<:keyword> ::= 'and' I'or' I 'xor' I'GT' I'GE'

I'LE' I'LT' I 'EQ' I 'NE' I 'while' I 'do'

I 'begin' I 'end' I 'then' I 'else' I <default_dims>

I <typename> I 'return' I 'endo' I 'endwhile' I 'endif'

<defaulLdims> ::= 'ncl'(<digit>)+

<comment> ::= '/*' <arbitrary> '*/'

<typename> ::= 'long' I 'short' I 'float' I 'double' I 'character'

I 'byte' I 'file' I 'numeric'

9.2 PROGRAM STRUCTURE

<program> ::= <block>

<block> ::= 'begin' <statement_list> 'end'

<statement list> ::= <statement>

I <statement> '_' <statement_list>

<statement> ::= <assignment>

I<if>

I <block>

I <procedure>

I <loop>

I <visblk>

<loop> ::= <do>

I <while>

<do>::= 'do' <var> '=' <expression> ',' <expression> [','

<expression>] <statement_list> 'endo'

<while> ::= 'while' <expression> <statement_list> 'endwhile'

<if> ::= 'if' <expression> 'then' <statement__list> 'endif'

I 'if' <expression> 'then' <statement._list> 'else' <statement>

'endif'

<procedure> ::= <name>

I <name> '(' <parameter_list> ')'

<proc_def> ::= 'procedure' <name> '('<para_def_list>')' <block>

<para_def_list> ::= <name> [<dimsizelist>] ':' <typename>

210 NCAR INTERACTIVE Functional Specification

EXPRESSIONS

I <name> [<dimsizelist>] ':' <typena-me> ','

<para_def_list>

<dimsizelist> ::= '[' digit+ ']' I '[' '*' ']'

I'[' digit+ ']' <dimsizelist>

I '[' '*' ']' <dimsizelist>

<parameter_list> ::= <expression>

I <expression> ',' <parameter_list>

<visblk> ::= <utilityname> <plotname> '{' <anychar> '}'

<plotname> ::= <identifier>

<utilityname> ::= <identifier>

9.3 EXPRESSIONS

<expression> ::= <assignment>

I <disjunction>

<assignment> ::= <name> '=' <expression>

<disjunction> ::= <conjunction>

I <disjunction> 'OR' <conjunction>

<disjunction> 'XOR' <conjunction>

<conjunction> ::= <comparison>

<conjunction> 'AND' <comparison>

<comparsion> ::= <relation>

<relation> <eqop> <relation>

<eqop> ::= 'EQ'

'NE'

<relation> ::= <sum>

<sum> <relop> <sum>

<re/op> ::= 'LE'

'LT'

I 'GT'

I 'GE'

<sum> ::= <term>

1<sum> <addop> <term>

<addop> ::= '+'

NCAR Interactive Functional Specification 211

NCLSYNTAX

I'>'

<term> ::= <expfactor> I <tema> <mulop> <expfactor>

<muIop> ::= '*'

I'#'

I'/'

I'%'

<expfactor> ::= <factor>

I <expfactor> <expop> <factor>

<expop> ::= '^'

<factor> ::= <primary>

I <unop> <factor>

<unop> ::= '+'

I 'NOT'

<primary> ::= <denotation>

I <name>

1'(' <expression> ')'

1<block>

1<function>

<name> ::= <identifier>

1<identifier> <subscript_list>

<subscript_list> ::= <subscript>

I <subscript> <subscript_list>

<subscript> ::= '[' <expression> ']'

'[' <expression> ':' <expression> ']'

,[, ,,, ,],

,[, ,, ,, ,],

'[' '*' ':' <expression> ']'

'[' <expression> ':' '*' ']'

'{' <expression> '}'

' {' <expression> ':' <expression> ' }'

' {' <expression> ':' '*' ' }'

'{' '*' ':' <expression> '}'

,{, ,, ,, ,},
'{' <identifier> 'r <expression> '}'

' {' <identifier> 'r <expression> ':' <expression> ,},

212 NCAR INTERACTIVE Functional Specification

|1

EXPRESSIONS

I '{' <identifier> 'r <expression> ':' '*' '}'

I '{' <identifier> '1' '*' ':' <expression> ' }'

<function> ::= <name> '(' <parameter_list> ')'

<fun_def> ::= 'function' <name> '('<para_def_list>')' <block>

NCAR Interactive Functional Specification 213

i

Form ApprovedREPORT DOCUMENTATION PAGE oMeNo.o7o4-of88

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office of Management and Bud_et, Paperwork Reduction Project I0704-01881, Washin_lton r DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1994 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Interactive Interface for NCAR Graphics

6. AUTHOR(S)
Bill Buzbee, Bob Lackman, Ethan Alpert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Center for Atmospheric Research

P.O. Box 3000

Boulder, CO 80301

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS<ES)

National Aeronautics and Space Administration - OSSA

Washington, D.C. 20546-0001

Universities Space Research Association

10227 Wincopin Circle, Suite 212
Columbia. MD 21044

11. SUPPLEMENTARY NOTES

930

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAS5-32337

5555-15

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189383

Technical Monitor: J. Hollis, Code 930

i2a. DISI_OWA-VAILABIL7TY STATEMENT

Unclassified-Unlimited

Subject Category 82

Report is available from the NASA Center for AeroSpace Information, 800 Elkridg_

Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The NCAR Graphics package has been a valuable research tool for over 20 years. As a low level Fortran library, however, it

was difficult to use for non-programming researchers. With this grant and NSF support, an interactive interface has been

created which greatly facilitates use of the package by researchers of diverse computer skill levels.

14. SUBJECT TERMS

Interactive graphics, NCAR command language, High-level Utilities

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIRCATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OFPAGES

226

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18, 298-102

i

